B.S ABDUR RAHMAN UNIVERSITY, VANDALUR, CHENNAI-48.

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

Ph.D. ENTRANCE EXAMINATION JUNE 2016

Duration: 2 hrs

of the system is (a) 10 seconds

(c) 2 seconds

The steady state error of a feedback control system with an acceleration input becomes finite in a					
(a) type 0 system (b) type 1 system (c) type 2 system (d) type 3 system					
The impulse response of a LTI system is a unit step function, then the corresponding transfer function is					
(a) 1/s (b) 1/s ² (c) 1 (d) s					
For a type one system, the steady state error due to step input is equal to					
(a) Infinity (b) zero (c) 0.25 (d) 0.5					
The equation $2s^4+s^3+3s^2+5s+10 = 0$ has					
(a) one (b) two (c) three (d) four roots in the left half of s-plane.					
If the Nyquist plot of the loop transfer function $G(s)H(s)$ of a closed loop system encloses the $(-1,j0)$ point in the $G(s)H(s)$ plane, the gain margin of the system is					
(a) zero (b) greater than zero (c) less than zero (d) infinity					
Given a unity feedback control system with $G(s) = \frac{K}{s(s+4)}$ the value of K for a damping					
ratio of 0.5 is					
(a) 1 (b) 16 (c) 32 (d) 64					
The LVDT is primarily used for the measurement of					
(a) displacement (b) velocity (c) acceleration (d) humidity					
A system with gain margin close to unity or a phase margin close to zero is					
(a) Highly stable (b) oscillatory (c) relatively stable (d) unstable					
The input to a controller is					
(a) sensed signal (b) desired variable value (c) error signal (d) servo signal					

10. If the transfer function of a first order system is $G(s) = \frac{10}{1+2s}$, then the time constant

(b) 1/10 seconds

(d) 1/2 second

11.	An electrometer amplifier has high input impedance of				
	a) 1010? b) 10 c) 1020? d) 10				
12.	When the input of diffe said to be operated in	rential amplifier V1 = 0, then the differential amplifier is			
	a) Common mode c) Non inverting mode	b) Differential mode d) Inverting mode			
13.	it is said to be operate	b) Differential mode			
14.	The negative feedback	in an amplifier			
15.	a) Reduces voltage gai c) Increases the gain b Feedback in an amplifie	and width product d) Reduces the input impedances			
	a) Increasing its input in c) Controlling its output	. , , , , , , , , , , , , , , , , , , ,			
16.	Using mechanical chopper we cannot achieve high chopping rates due to their				
	a) Input impedance c) Response time	b) Output impedance d) Inertia			
17.	The CMRR of a typical IC OPAMP is				
	a) 70 dB c) 85 dB	b) 80 dB d) 75 dB			
18.	A ——— is usually	a display device used to produce a paper record of analog wave form.			
	a) Graphic pen recorde c) X-Y recorder	r b) Electron microscope d) Oscilloscope			
19.	The of a reddeflection in a record	cording system is the magnitude of input voltage required to produce a standard ed trace.			
	a) Accuracy c) Sensitivity	b) Linearity d) Resolution			
20.	A recorder is said to hat all frequencies present a) Unity b) Ze c) Infinity d) Co	ero			

- 21. A series dissipative regulator is an example of a:
 - a. linear regulatorb. switching regulatorc. shunt regulatord. dc-to-dc converter
- 22. Which of the following is a unit of mass in the metric system?
 - a. gramb. millilitrec. centimetred. pounds
- 23. What device is similar to an RTD but has a negative temperature coefficient?
 - a. Strain gaugeb. Thermistorc. Negative-type RTDd. Thermocouple
- 24. The resistive change of a strain gauge
 - a. is based on the weight placed upon it, but can be many thousands of ohms
 - b. is usually no more than 100 omega.
 - c. is based on the gauge factor, but is typically less than an ohm
 - d. has a positive temperature coefficient
- 25. The output voltage of a typical thermocouple is
 - a. Less than 100 mV b. Greater than 1 V
 - c. Thermocouples vary resistance, not voltage. d. None of the above
- 26. The connections to a thermocouple
 - a. Can produce an unwanted thermocouple effect, b) Produce an extra desirable thermocouple effect which must be compensated for
 - c. Must be protected, since high voltages are present
 - d. Produce an extra desirable thermocouple effect and must be protected, since high voltages are present
- 27. What is the zero-voltage switch used for?
 - a. To reduce radiation of high frequencies during turn on of a high current to a load
 - b. To control low-voltage circuits
 - c. To provide power to a circuit when power is lost
 - d. For extremely low-voltage applications
- 28. Temperature sensing can be achieved by the use of
 - a. Thermocouples b. RTDs
 - c. Thermistors d. All of the above
- 29. The purpose of compensation for a thermocouple is
 - a. to decrease temperature sensitivity b. to increase voltage output
 - c. to cancel unwanted voltage output of a thermocouple d. used for high-temperature circuits
- 30. The change in value of an analog signal during the conversion process produces what is called the
 - a. Quantization errorb. Resolution errorc. Nyquist errord. Sampling error

31. Resistively generated interence arises through incorrect						
	a) Grounding b) Current density at the electrodes c) Supply voltage d) Input impedance					
32.	CMRR is more in					
	a) Single ended amplifierb) Differential amplifierc) Inverting operational amplifierd) Chopper amplifier					
33.	For biomedical applications the mostly used amplifier is					
	a) Single ended amplifierb) Differential amplifierc) Inverting operational amplifierd) Chopper amplifier					
34 amplifier is used to drive the recorder.						
	a) Power amplifierb) Pre amplifierc) Operational amplifierd) Differential amplifier					
35. When a number of components are fabricated on same IC chip it is necessary to provide isolation between two different components for input interconnection is called						
	a) Input amplification b) Input differentiation c) Common mode rejection d) Input isolation					
36.	A chopper amplifier					
	a) Converts AC signal from low frequency to high frequency b) Converts DC signal from low					
	c) Converts AC signal from low frequency to DC high frequency d) Converts DC signal from low frequency to high frequency frequency to high frequency					
37.	Power amplifier is provided with S1: Cross over distortion compensation S2: Offset control					
	a) S1 is true & S2 is false c) Both S1 & S2 are true b) S2 is true & S1 is false d) Both S1 & S2 are false					
38.	Pre amplifier isolation in ECG circuit is to					
	a) Increase input impedance b) Decrease input impedance c) Increase output impedance d) Decrease output impedance					
39.	Raising input impedance of pre amplifier reduces a) Input current b) Output current c) Stray current d) Grid current					
40.	Common mode rejection ratio is defined as ratio of a) Common mode gain to differential mode gain b) Differential mode gain to common mode gain					
	c) Common mode gain at input to differential d) Common mode gain at output to differential mode gain at output					

41.	 What is the flux density of a magnetic field whose flux is 3000 μWb and cross-sectional area is 0.25 m 							
	a. 12,000 µ T c. 0 µ T	b. 83,330 µ T d. More informa	ation is needed in ord	er to fin	d flux density.			
42.	 How much flux is there in a magnetic field when its flux density is 5000 mu.gifT and its cross-sections area is 300 mm ²? 							
	a. 16.67 m Wb c. 3.0 m Wb	b. 5.0 μ Wb d. 1.5 μ Wb						
43.	43. What are the effects of moving a closed wire loop through a magnetic field?							
	a. A voltage is inc c. The polarity ac	duced in the wire. ross the wire depends	on the direction of mo	otion.	b. A current is induced in the wire d. All of the above			
44.	The Hall Effect							
		on with no practical apotentials of thousands of			used in various sensor applications he basis for solar cell operation			
45.	45. A Hall Effect sensor							
	a. exists only in the c. can operate on	neory Ily a few times before f	ailure		a non-contacting magnetic sensor duces very large voltages			
46.	46. Which two values are plotted on a B-H curve graph?							
	a. Reluctance and c. Magnetizing for	d flux density rce and permeability			rmeability and reluctance x density and magnetizing force			
47.	47. For turbulent flow, the velocity at the center is times the mean velocity							
	a. 1.2 c. 2	b. 2.2 d. 3.333						
48.	48. The decibel is a measure of							
	a) Current c) Power	b) Voltage d) Power level						
49. Power gain in decibels is equal to voltage gain in decibels only when								
a) Input impedance is equal to output) o) Never			npedance	•	tput impedance is zero ut impedance is zero			
50. An ideal amplifier has								
a) Noise figure of 0 db b) Noise figure of more than 0 db c) Noise factor of unity d) Noise figure of less than 1 db								

- 51. Two voltmeters are each 0-300 V range. Their internal resistances are 10 k Ω and 20 k Ω They are connected is series and a voltage of 400 V is applied. Their readings respectively will be
 - a. 266.6 and 133.3 V
- b. 133.3 and 266.6 V
- c. 200 V each
- d. 100 and 300 V
- 52. The current passing through a resistance of 100 \pm 0.2% Ω is 2 \pm 0.5% A. The limiting error in computation of power will be
 - $a. \pm 0.7\%$
- b. $\pm 0.9\%$
- c. $\pm 1.2\%$
- $d. \pm 0.3\%$
- 53. Consider the following instruments
 - 1. Tangent galvanometer
 - 2. Rayleigh current balance
 - 3. Household energy meter
 - 4. Hot wire ammeter

Out of above absolute instruments are

- a. 1, 2 and 3
- b. 1, 2 and 4
- c. 1 and 2
- d. 2, 3 and 4
- 54. A 0-150 voltmeter has a guaranteed accuracy of 1% of full scale reading. If actual reading is 83 V, the percentage error is
 - a. 0.83%
- b. 1%
- c 1.81%
- d. none of the above
- 55. A wire strain gauge has a gauge factor of 2, resistance of 125 Ω and length 1 m. If length of wire changes by .005 m, change in resistance will be
 - a. 0.25Ω
- b. 0.5 Ω
- c. 1.25 Ω
- d. 2.5 Ω
- 56. The dead zone in a pyrometer is 0.125% of span. The calibration is 400°C to 1000°C. What temperature change might occur before it is detected.
 - a. 0.125°C

b. 0.75°C

c. 0.4°C

- d. 1°C
- 57. The ac bridge in figure is balanced. $Z_1 = 100 \angle 30^\circ$, $Z_2 = 150 \angle 0^\circ$, $Z_3 = 250 \angle -40^\circ$ Then $Z_4 = 100 \angle 30^\circ$, $Z_5 = 100 \angle 30^\circ$, $Z_7 = 100 \angle 30^\circ$,

- a. 375∠70° Ω
- b. 375∠ 70° Ω
- c. 150∠0° Ω
- d. 150∠20° Ω
- An accelerometer has a seismic mass of 0.05 kg and spring constant of 3 x 10^5 N/m. If maximum displacement of mass is \pm 1 mm, the maximum acceleration which can be measured is
 - a. 30 m/s²
- b. 60 m/s²
- c. 90 m/s²
- d. 120 m/s²
- 59. PCM employing 4 bit code is used to send data having frequency range from 0 to 2 kHz. The minimum required bandwidth of carrier channel is
 - A. 2 kHz
- B. 4 kHz
- C. 8 kHz
- D. 16 kHz
- 60. When a capacitor is connected to the terminals of an ohmmeter, the pointer indicated a low resistance initially and finally come to infinity position. This shows that capacitor is
 - a. short circuited
- b all right

c faulty

d open circuited

61. The following waveform pattern is for a(n) ___

a 2-input AND gate b 2-input OR gate d None of the above c Exclusive-OR gate

62. Why, in most applications, are transistor switches used in place of relays?

a They consume less power. b They are faster. c They are quieter and smaller.

d all of the above

63. A comparator is an example of a(n)

a. active filter b. current source d. nonlinear circuit c. linear circuit

64. The coil of a moving iron instrument has a resistance of 500 Ω and an inductance of 1 H. It reads 250 V when a 250 V dc is applied. If series resistance is 2000 Ω , its reading when fed by 250 V, 50 Hz ac will be

a 260 V b 252 V c 250 V d 248 V

65. An ammeter of 0-25 A range has a guaranteed accuracy of 1% of full scale reading. The current measured is 5 A. The limiting error is

a 2% b 2.5% c 4% d 5%

66. Which of the following voltmeters would you use for measuring voltage across 20 k Ω resistance?

a Voltmeter having a resistance of 5 k Ω

b Voltmeter having a sensitivity of 1 kW/V

c Voltmeter having sensitivity of 10 kW/V

d None of the above

67. A moving coil instrument has a resistance of 0.6 Ω and full scale deflection at 0.1 A. To convert it into an ammeter of 0-15 A range, the resistance of shunt should be

a. 0.6 Ω b 0.06 Ω c. 0.1 Ω d 0.004Ω

68. An LVDT is used to measure displacement. The LVDT feeds a Voltmeter of 0-5 V range through a 250 gain amplifier. For a displacement 0.5 mm the output of LVDT is 2 mV. The sensitivity of instrument is

b 0.5 V/mm a. 0.1 V/mm d. 5 V/mm c 1 V/mm

69. The Lissajous pattern observed on screen of CRO is a straight line inclined at 45° to x axis. If X-plate input is 2 sin ωt , the Y-plate input is

A. $2 \sin \omega t$ B. $2 \sin (\omega t + 45^{\circ})$ C. 2 sin (ωt - 45°) D. 22 sin $\omega t + 45^{\circ}$)

70. A meter with a resistance of 100 Ω and a full scale deflection of current of 1 mA is to be converted into voltmeter of 0 - 5 V range. The multiplier resistance should be

a 490 Ω b 5000 Ω c 4900 Ω d. 5100Ω

- 71. An 8085 microprocessor based system uses a 4K x8 bit RAM whose starting address is AA00H. The address of the last byte in this RAM is
 - a. 0FFFH
- b. 1000H
- c. B9FFH
- d. BA00H
- 72. In an 8085 microprocessor system with memory mapped I/O,
 - a. I/O devices have 16 bit addresses
 - b. I/O devices are accessed using IN and OUT instructions
 - c. There can be a maximum of 256 input devices and 256 output devices
 - d. Arithmetic and logic operations can be directly performed with the I/O data
- 73. An I/O processor control the flow of information between
 - a. Cache memory and I/O devices
- b. Main memory and I/O devices

c. Two I/O devices

- d. Cache and main memory
- 74. If $CS = A_{15}A_{14}A_{13}$ is used as the chip select logic of a 4K RAM in an 8085 system, then its memory range will be
 - a. 3000 3FFFFH

- b. 7000 7FFFH
- c. 5000 5FFFH and 6000 6FFFH d. 6000 6FFFH and 7000 7FFFH
- c. 5000 5FFFH and 6000 6FFFH d. 6000 6FFFH and 7000 7FFFH
- 75. Which of the following can be used as a tachogenerator in control systems?
 - a Microsyn
- b. DC servomotor
- c. AC servomotor
- d. Magnetic amplifier
- 76. Six sets of electromagnetic waves are given below:
 - 30 300 KHz 10 30 KHz 3 30 MHz 300 3000 KHz 30 300 MHz > 300 MHz
 - There are designated in the following order
 - a VLF, LF, MF, HF, VHF, UHF
- b LF, VLF, MF, HF, VHF, VHF
- c LF, VLF, HF, MF, VHF, UHF d VHF, VLF, HF, MF, LF, UHF
- 77. Which among the following waveforms can be reconstructed from its samples without distortion?

- a. 1 and 2
- b. 2 and 3
- c. 1 and 3
- d. Only 2
- 78. Assign the proper odd parity bit to the code 111001.
 - a 1111011
- b1111001
- c 0111111
- d0011111
- 79. Before an SOP implementation, the expression $X = AB(\overline{CD} + EF)$ would require a total of how many gates?
 - a 1

b 2

c 4

- d 5
- **80.** A 4-variable AND-OR-Invert circuit produces a 0 at its Y output. Which combination of inputs is correct?
 - A AB+CD
- $B \overline{A}\overline{B} + \overline{C}\overline{D}$
- C. $\overline{A}\overline{B} + CD$
- D. none of the above

- 81. How many gates would be required to implement the following Boolean expression before simplification? XY + X(X + Z) + Y(X + Z)
 - a. 1
- b. 2
- c. 4
- d. 5
- 82. Find $V_x V_y V_z$

- A. $V_x = -6 \ V_y = 3 \ V_z = -3$ C. $V_x = 6 \ V_y = 3 \ V_z = 3$

- B. $V_x = -6 V_y = -3 V_z = 1$ D. $V_x = 6 V_y = 1 V_z = 3$
- 83. For a given voltage, four heating coils will produce maximum heat when connected
 - A. all in parallel

- B. all in series
- C. with two parallel pairs in series
- D. one pair in parallel with the other two in series
- 84. The inverse of given Laplace transform is

$$X(s) = \frac{x^2 - e^x}{x^4 - 2x^2 e^{1/x} (1) + e^{(2/x)} + 1}$$

$$x = \sqrt{s}^{\sqrt{s}...\infty}$$

- A. sin t
- B. $\cos t$ D. e^{2t}
- $C.e^t$
- 85. Derive the Boolean expression for the logic circuit shown below:

- a C(A + B)DE
- b $\left[C(A + B)D + \overline{E}\right]$
- $C \left[\left[C(A + B)D \right] \overline{E} \right]$
- d ABCDE
- 86. Denominator polynomial of a transfer function of certain network is: $s^3 + s^2 + 2s + 24$ Then the network is:
 - A. stable
- B. oscillatory
- C. unstable
- D. depends on numerator polynomial
- 87. The amplitude of a pair of composite sinusoidal signal $y(n) = x_1(n) + x_2(n)$ with $x_1(n) = \sin x_1(n)$ $(5 \square n) \ x_2(n) = 3 \sin (5 \square n)$ is ______
 - a 2
- b 3
- c 4
- d 1

88. The amplifier circuit shown below uses a silicon transistor. The capacitors C_c and C_E can be assumed to be short at signal frequency and the effect of output resistance r_0 can be ignored. If C_E is disconnected from the circuit, which one of the following statements is TRUE?

- A. The input resistance R_i increases and the magnitude of voltage gain A_vdecreases
- B. The input resistance R_i decreases and the magnitude of voltage gain A_vdecreases
- C. Both input resistance R_i and the magnitude of voltage gain A_v decrease
- D. Both input resistance R_i and the magnitude of voltage gain A_v increase
- 89. The electric field of 2.5 x 10⁷ V/m can give 1 eV energy to condition electron, then in a copper block what will be the mean free path of electron?

a 5 x 10⁻⁸ m b 4 x 10⁻⁷ m c 0.4 m d 0.5 m

- 90. The number of hardware interrupts (which require an external signal to interrupt) present in an 8085 microprocessor are
 - 1 4 a. b. d. 13 5 C.
- 91. NMOS devices have switching speeds and on-state resistance; as compared with PMOS devices.
 - a. slower, higher b. faster, lower
 - c. faster, higher d. slower, lower
- 92. 4 point DFT for $x(n) = \{2, -1, 2, 3\}$ is
 - a. {6, 4 2*j*, 2, 2*j*}
- c. $\{6, -1 + 3j, 4 4j, 4 2\}$
- b. {6, 4*j*, 2, 4*j*} d. {6, 2*j*, 4 2*j*, 2 + 2*j*}
- 93. 84₁₆ 2A₁₆ is equal to
 - a. 5A₁₆
- b. 4A₁₆
- c. $7A_{16}$
- d. 15A₁₆
- 94. A fair coin is tossed independently four times. The probability of the event "the number of time heads shown up is more than the number of times tails shown up" is
 - 16

- 8
- d. 16
- 95. The probability density function of a random variable x is as shown

The value of A is:

- c. 5

96. The logic realized by the circuit shown in figure below is

- a. F = A C.
- b. $F=A \oplus C$.
- c. $F = B \odot C$.
- d. $F = B \oplus C$

97. The z-transform of a signal $x[n] = 7\left(\frac{1}{3}\right)^n u(n) - 6\left(\frac{1}{2}\right)^n u[n]$ converges if and only if

 $\left|\frac{1}{3z}\right| < 1 \text{ and } \left|\frac{1}{2z}\right| < 1$

- b. $\left| \frac{1}{3} z \right| < \text{and} \left| \frac{1}{2} z \right| < 1$
- $\begin{bmatrix} \frac{1}{3} z^{-1} \end{bmatrix} > \text{and} \begin{vmatrix} \frac{1}{2} z^{-1} \end{vmatrix} > 1$
- $\left|\frac{1}{3}z\right| > \text{ and } \left|\frac{1}{2}z\right| > 1$

98. The network is as shown below.

- a. First order system and the pole $-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 \left(\frac{1}{\sqrt{LC}}\right)^2}$
- b. Second order system of the two poles are $-\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 \left(\frac{1}{\sqrt{LC}}\right)^2}$
- c. Second order system of the poles is $\frac{R}{2L} \sqrt{\left(\frac{R}{2L}\right)^2 \left(\frac{1}{\sqrt{LC}}\right)^2}$
- d. None of the above

99. For a series resonant circuit at low frequency circuit impedance is _____ and at high frequency circuit impedance is ______ and at high frequency circuit impedance is ______ and at

- a. capacitive, inductive b. inductive, capacitive
- c. resistive, inductive
- d. capacitive, resistive

100. What is the current in the feedback resistor for the circuit given below?

- a. 0.625 mA
- b. 1.25 mA
- c. 1.875 mA
- d. 1.625 mA