B.S. ABDUR RAHMAN UNIVERSITY, CHENNAI 600 048 DEPARTMENT OF MATHEMATICS & AS

Ph.D. Entrance Examinations – June 2016

Ī	Name		Application Number					
L	Answer all the questions (Tick the appropriate answer in the answer sheet)							
1	In th Find	In the sequence <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , 0,1,1,2,3,5,8 each term is the sum of the two terms to its left. Find <i>a</i>						
2	a) -3 Whi	a) -3 b) -1 c) 0 d) 1 Which of the following equations have the same graph?						
	I.y =	$= x - 2$ II. $y = \frac{x^2 + 4}{x - 2}$ III. $(x + 2)y = x^2$	+ 4					
3	a) I a diffe A se valu	and II only b) I and III only c) II and III onle erent graph) equence is defined by the recurrence relation be of u_2 ?	ly d) None(All the equation $u_{n+1} = 3u_n - 4, u_0 = -4$	ions have –1 .What is the				
4	a) -2 Man right he w from	b) - 10 c) - 4 boj starts from point P and walks towards so t turn and then a left turn and stops at R. He walks 5Km before taking each turn, towards n point S to reach point Q.	d) -1 uth and stops at point Q. finally takes a left turn a which direction will Mar	He now takes a nd stops at S. If noj have to walk				
5	a)No If co	bortheast b) North c) South d) $1 \\ cos 32^{\circ} = m \text{ and } cos x = 2m^2 = 1; \alpha, \beta \text{ are the set of } \alpha$	East he values of <i>x</i> between 0	°and 360° then				
	a) α	$+\beta = 180^{\circ}$ b) $\beta - \alpha = 200^{\circ}$						
	c) β	$= 4\alpha + 40^{\circ}$ d) $\beta = 5\alpha - 20^{\circ}$						
6	If lo	$g_3 t = 2 + log_3$, what is the value of <i>t</i> ?						
7	a) 7 Fund	b) 25 c) 10 ctions f and g are given by $f(x) = 2x - 3$ and	d) 45 $g(x) = x^2$. Find an express	ssion for $g(f(x))$.				
	a) g($(f(x)) = 4x^2 - 12x + 9$ b) $g(f(x)) = x^2 + 6x^2 + 6x^2$	-2x - 3					
	c) g($(f(x)) = 4x - 9$ d) $g(f(x)) = 2x^3$	$-3x^2$					
8	The	number of real solution to the equation $\frac{x}{100}$	= <i>sinx</i> is					
9	a)61 The $\sum_{n=1}^{\infty}$	b) 62 c) 63 d) of result "let (-1,1) be interval of convergence $a_0 a_n = S$, then $\lim_{x\to 1-0} \sum_{n=0}^{\infty} a_n x^n = S^n$ is	64 for the power series $\sum_{n=1}^{\infty}$ s known as	$a_0 a_n x^n$. If				
	a) ui	niqueness theorem b) weierstr	cass's theorem					
	c)Ta	auber's theorem d) Abel's t	theorem					
10	The	function $D: R \to R$ such that $D(x) = \begin{cases} 1, i \\ 0, i \end{cases}$	$f \ x \in Q$ $f \ x \notin Q \text{ is known as}$					
	a) st	b) simple function	1					
	c) cł	haracteristics function d) dirichlets funct	ion					
11	15%	o of 1080 is						
	a) 10	61.20 b) 162 c) 322.40 d) 3224	ļ					

12	0.35% expres	sed as a deci	imal, is equal	to			
	a) 0.35	b) 0.035	c) 0.0035	d) 3.5			
13	For $0 \le p \le$	1 the series	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is				
	a) convergent	but not abso	olute	b) conv	rergent		
	c) absolutely	convergent		d) osci	llatory		
14	In terms of po	owers of prir	ne numbers,	1260 can be w	vritten as		
	$a)2^2 \times 3 \times 5$	² b) $2^2 \times 3$	$3^2 \times 5 \times 7$ c) $2 \times 3^2 \times 5^2$	$^{2} \times 7$ d) 3×2^{2}	\times 7 ² \times 5	
15	Suppose hops jumps equals skips?	s, skips, and e hops, and	jumps are spe f jumps equal	ecific units of s g meters, th	length. If b hops hen one meter equ	equals c skips, d als how many	
16	a) $\frac{bdg}{cef}$ A calculator h key which rep starts with an calculator is c	b) $\frac{cdf}{beg}$ has a key who places the dis entry $x \neq 0$ completely a	c) $\frac{cdg}{bef}$ which replaces the splayed entry and alternate of the courate (e.g. 1)	d) $\frac{ce_j}{bd_j}$ he displayed with its recip by squares and to roundoff of	^f / _g entry with its squ rocal. Let y be th l reciprocates n ti r overflow) then	are, and another the final result if one times. Assuming th y equals	e e
17	$a)x^{((-2)^n)}$ The following	b) x ²ⁿ g four statem	c) x^{-2n} nents, and onl	d) $x^{-(x)}$ d) these are fo	(2^n) und on a card:		
	On this card e	exactly one s	statement is fa	llse.			
	On this card e	exactly two s	statements are	false.			
	On this card e	exactly three	statements a	re false.			
	On this card e	exactly four	statements are	e false.			
	Assume each is exactly	statement is	either true or	false. Amon	g them the numbe	er o false statemen	ts

d) 3 a)0 b) 1 c) 2 18 The product of (2 x - 3) and (2 x + 3) is :

a) $2x^2 - 3$ b) $4x^2 - 3$ c) $4x^2 - 9$ d) $4x^2 + 9$

In Fig. 2, if $\angle BPQ = 36^\circ$, then y equals 19

a) 36° b) 72° c) 46° d) 48°

20 In Fig. 1, ABC is a triangle in which

AB = BC and $\angle B = 40^\circ$, then x equals :

a) 110°b) 120° c) 140° d) 70°

A two digit number is such that the product of its digits is 12. When 36 is added to the 21 number, the digits interchange their places. Find the number.

b)28 c) 14 a) 27 d)26

22	Find the radius of a sphere whose surface area is 616 cm^2 .					
	a) 7 b) 3	c) 4 d) 8			
23	The value of tan 1°. tan 89° is :					
	a) $\frac{1}{2}$ b) $\frac{3}{2}$	c)1	d) $\frac{1}{\sqrt{3}}$			
24	In what time will Rs. 4 years at 3% per ann	2700 yield the same um?	simple interest at	4% per annum as Rs. 2250 in		
	a) $2\frac{1}{2}$ b) $2\frac{3}{2}$	c) 2	d) $4\frac{1}{3}$			
25	Find the median of th					
	1 b) 2	c) 1.5	Ċ	1) 2.5		
26	In a frequency distrib limit of class is	ution, the class mark	of a class is 10 a	nd its width is 5. The lower		
~-	a) 5 b) 7.5	c) 10	d) 12.5			
27	If $sin\theta = \frac{a}{b}$ then $cos\theta$	9 equals:				
	a). $\frac{\sqrt{b^2 - a^2}}{b}$ b). $\frac{\sqrt{a^2}}{a}$	$\frac{b}{b}$ c). $\frac{b}{\sqrt{b^2 - a^2}}$	d). $\frac{1}{\sqrt{3}}$			
28	Evaluate: Cos 43°. Co	ot 79° – Sin 47°. tan 1	1°			
	a) 1 b) 0	c) 2	d) infinity			
29	If the digit of the nun how many digits will	ber 26839514 are arr remain unchanged	anged in descend	ling order, the position of		
30	a) Two In a row of twenty stu How many students a	b) four c) no idents, R is fifth from ire there between R an	ne d) the right end and nd T in the row?	three d T is fourth from the left end.		
31	a) 11 b) 10 M/M/3/N, queue desc	c) 13 cription states the num	d) 12 nber of servers ar	nd buffer capacity as		
	a) 3 and M	b) M and 3	c) 3 and N	d) None of these		
32	There are N inventor replacing the invento	es in the system, one ries. This process is s	by one all the inv tated as	ventories are consumed with		
	a) The pure death pro	b) The p	ure birth process			
	c) The birth-death pro	ocess d) none of	of these			
33	Every distributive lat	tice is				
	a) Modular b) lattic	e c) distributive lat	ice d) isotonity	4		
34	If 'n' is an integer an	d $3n + 2$ is odd then	'n' is			
	a) odd b) even c)	either odd or even	d) neither even n	or odd		
35	If the primal has unbounded solution then the dual has					
	a) Infeasible solution	b) no solution c)	many solution	d) infinite solution		
36	A constraint of \leq type	e is changed to equali	ty by adding a			
	a) Slack variable	b) surplus variable	c) basic variab	le d) non basic variable		
37	The set of all feasible a) Convex set	solutions to an LPP b) concave set	is a c) degeneracy	set d) non degeneracy set		

38	What is the minimum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade, if there are five possible grades, A, B, C, D and F?				
	a) 26 b) 36 c) 20 d) 16				
39	Every subgroup of a cyclic group is a) Cyclic b) subgroup c) abelian group d) normal subgroup				
40	A simple graph is connected iff it hasa) Spanning treeb) treec) circuitd) square				
41	The statement "The nest arrival of a customer is independent of previous arrival of customer" stated as				
42	Under the exponential assumption the probability that an event occur in sufficient small interval is				
43	a) greater than one b) less than one c) equal to one d) None of these In the EQQ model				
75	a) Order arrive in a batch b) Demand is known and occurs at a constant rate				
	c) All demand must be satisfied d) All of the above				
44	Under Memory less property assumption, the arrival of the customer is independent of				
	a) Previous arrival b) Future arrival c) State of arrival d) None of these				
45	A manufacturer has to supply 12000 units of a product per year to his customer. Shortages are not permitted and there is no lead time. The inventory holding cost is Rs. 0.20 per unit per month and the setup cost per run is Rs. 350. The economic lot size is				
	a) 1870 b) 1860 c) 1890 d) 1880				
46 47	In a carwash station cars arrive for service according to Poisson distribution, with mean 4 per hr. The average service time of a car is 10 min. The probability that an arriving car has to wait is a) $2/3$ b) $1/3$ c) $4/6$ d) $\frac{1}{2}$ All of the following may be used to find the EOQ except				
	a)Optimal number of days supply to order				
	b)Number of orders which minimize ordering costs				
	c) Optimal number of rupees per order				
	d) optimal number of orders per year				
48	The mean and variance of the poisson distribution are				
	a) equal b) mean>variance c) mean <variance d)="" none="" of="" td="" these<=""></variance>				
49	For M/M/1 model the expected number of busy servers are equal to				
	a) Traffic intensity ρ b) Arrival rate λ c) Service rate μ d) None of these				
50	In queuing description M/M/1 the arrival and departure distribution are				
	a) Both Markovian b) Binomial c) General d) None of these				
51	Laplace transform of tant doesn't exist because				
	a) It has finite number of discontinuous points				

	b) It has finite number of continuous points						
	c) It has an infinite number of continuous points						
	d) It has an infinite number of discontinuous points						
52	The complementary function of $x^2 y'' - 2xy' + 2y = 0$ is						
	a) $A + Bx$ b) $Ax + Bx^2$ c) $Ax^2 + Bx + C$ d) $Ax + B$						
53	If $H_1 \& H_2$ are subgroups of a group G then $H_1.H_2 = \{h_1h_2 \in G \setminus h_1 \in H_1, h_2 \in H_2\}$ is a subgroup of G.						
	a)True b) false c) Not a subgroup d) none of the above						
54	The following inequality is correct						
	a) $P(A \cap B) \le P(A) + P(B)$ b) $P(A \cap B) \ge P(A) + P(B)$						
	c) $P(A \cap B)=O$ d) $P(A \cap B)=P(A)+P(B)$						
55	If A and B are independent events then						
	a) $P(A B)=P(A).P(B)$ b) $P(A B)=P(B)$ c) $P(A B)=P(A)$ d) None of these						
56	The cost matrix in a assignment problem is a						
	a) Square matrix b) Rectangle matrix c) Diagonal matrix d) None of these						
57	'A 'can hit a target in 4 out of 5 shots and 'B' can hit the target in 5 out of 6 shots. The target being hit when both try is						
	a) 29/30 b) 9/30 c) 12/30 d) 7/30						
58	The probability distribution function always satisfies the probability postulates						
	a) Always true b) Partially true c) Always false d) Partially false						
59	If n is not a multiple of 23 then the remainder when n^{11} is divided by $23 \pm is 1 \pmod{23}$						
60	a) True b) false c) statement is incorrect d) none of the above						
60	The probability of occurrence of any event						
<i>c</i> 1	a) more than 1 b) more than 0 c) less than 1 d) 0 and less than or equal to 1						
61	The mobius transform takes						
60	a) Circle in to line b) Circle to Circle c) Circle into square d) None of these						
62	Bender Smidth formula is valid only when						
	a) $k = \frac{a}{2}h^2$ b) $h = \frac{a}{2}k^2$ c) $k = \frac{h}{2}a^2$ d) $k = \frac{a}{2}h$						
63	In the definition of Fourier transform $F(s) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x) e^{isx} dx$, the kernel is						
	a) $f(x)e^{isx}$ b) e^{isx} c) $\frac{1}{\sqrt{2\pi}}e^{isx}$ d) $\frac{1}{\sqrt{2\pi}}$						
64	Numerical solution of first order differential equation using Milne predictor Corrector formula requiresprior values of the dependent variable a) 5 b) 4 c) 3 d) 1						

65 The Simpsons three eighth rule is applicable if

- a) number of subintervals must be even
- b) number of subintervals must be odd
- c) number of subintervals is a multiples of 3
- d) number of subintervals is a multiples 8
- 66 Criterion for the convergence in Newton Raphson method is

a)
$$|f(x) f^{1}(x)| \le |f^{11}(x)|$$

b) $|f(x) f^{11}(x)| \le |f^{1}(x)|$
c) $|f(x) f^{11}(x)| \le |f^{1}(x)|^{2}$
d) $|f(x) f^{1}(x)| \le |f^{11}(x)^{2}|$

67 Fourier sine transform of 1 / x is

a)
$$\sqrt{\frac{\pi}{2}}$$
 b) $\frac{\pi}{2}$ c) $\sqrt{\frac{2}{\pi}}$ d) $\sqrt{\frac{2}{\pi}}$

⁶⁸ The transformation for evaluating the definite integral $\int_{a}^{b} f(x) dx$ using Gauss Quadrature formula is

a)
$$x = \left(\frac{b-a}{2}\right)t + \left(\frac{b+a}{2}\right) \qquad b) x = \left(\frac{b+a}{2}\right)t + \left(\frac{b-a}{2}\right)$$

c)
$$x = \left(\frac{a-b}{2}\right)t + \left(\frac{a+b}{2}\right) \qquad d) x = \left(\frac{b-a}{2}\right) + \left(\frac{b+a}{2}\right)_{t}$$

$$L^{-1}\left[\frac{e^{-s}}{s}\right] = \dots (u(t) = \text{unit step function})$$

a) u (t-1) b) u (t-2) c) u (t+1) d)u(t+2)
70 $L\left[t^{\frac{1}{2}}\right] = \dots a) \frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$ b) $\frac{\sqrt{\pi}}{3s^{\frac{3}{2}}}$ c) $\frac{\sqrt{\pi}}{2s^{\frac{2}{3}}}$ d) $\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$

71 Every basic feasible solution in convex set of solution is
a) Extreme point b) Boundary Point c) Non- extreme point d) Non- boundary point
72 If I is a ideal in a ring then

a) R/I is a ring b) RI is a ring c) R+I is a ring d) R-I is a ring

73 If G is an open set then curve γ is homologous to zero if for all $ww \in \mathbb{C} - G - a$ a) $n(\gamma; w) = 0$ b) $n(\gamma; w) = 1$ c) $n(\gamma; w) = 2$ d) $n(\gamma; w) = 4$

74 If R is an integral domain with unit element, then a) R[x] is not a commutative Ring b) R[x] has a unit element c) Any unit in R[x] is unit in R d) any unit in R[x] is not an unit in R 75 A branch of logarithmic function is

- a) Continuous function b) Differential function
- c) Analytic function d) none of these

76	If F is a bounded entire function, then F is				
	a) Constant b) f is zero				
	c) f is an increasing function d) f is an decreasing function				
77	An analytic function is				
	a) Infinitely differentiable b) finitely differentiable				
	c) Not differentiable d) none of these				
78	Which of the following is false?				
	a) F[x] is an integral domain b) F[x] is Euclidean ring				
	c) F[x] is a Principal ideal ring d) F[x] is not a group				
79	A function $f(z + c) = f(z)$, where c is any number, then f is				
	a) A periodic function b) periodic function with period c				
	c) Periodic function with period z d) none of these				
80	If f is analytic and $f'(z) \neq 0$, then				
	a) f is non conformal mapping b) f is conformal mapping e				
	c) f is non constant function d) None of these				
81	The volume of a parallelepiped whose edges are represented by				
	$-\mathbf{P} + \mathbf{F} + \mathbf{F} + \mathbf{F} = \mathbf{F}$ is 546. What is the value of a?				
	a) -1 b) 10 c) -3 d) 23				
82	If $ \vec{a} = 12$ $ \vec{b} = 5$ $\vec{a} \cdot \vec{b} = 60$ find the order of $ \vec{a} \times \vec{b} $				
	If $ u = 13$, $ v = 5$, $u \cdot v = 60$ find the value of $ u \wedge v $ a) 9 b) 1 c) 13 d) 25				
83	In linear ode, and the dependent variable and its differential coefficients are not				
	multiplied together and occurs only in				
	a) First degree b) Second degree c) Third degree d) Fourth degree				
84	In AX = 0 if $ A = 0$ then the solution is a) trivial b) non trivial c) infinite d) no solution				
85	The equation $ydx + xdy$ is				
00	a) Exact differential equation b Not -exact equation				
	c) Partial differential equation d) None of these				
86	The value of Wronskion W(x, x^2 , x^3) is				
	a) $2x^4$ b) $2x^2$ c) $2x^3$ d) None of these				
87	The n th order ordinary linear homogenous differential equation contains				
	a) n-singular solutions (b) No singular solution,(c)One singular solution d)None of these				
88	What is the value of X if the points $(3, 2, -4)$, $(9, 8, -10)$ and $(X, 4, -6)$ are collinear?				
	a) 1 b) -3 c) 5 d) 0				
89	Singular solution of differential equation contains				
	1) Arbitrary constant 2) Can be obtained from general solution 3) Does not contain any				
	arbitrary constants 4) Cannot be obtained from general solution				
	a) 1, 2 are true b) 3, 4 are true c) the 1, 4 are true d) 2, 4 are true				

90 The complete solution of differential equation, contains arbitrary constants a) More than the order of equation b) can't say c) Equal to order of equation d) less than the order of equation The random variables X and Y are independent whose joint density is $f(x,y) = xye^{-xy}$ 0 91 $< x, y < \infty$, then f(x) is a) $\int_{-\infty}^{\infty} xy e^{-xy} dy$ b) $\int_{0}^{\infty} xy e^{-xy} dy$ c) $\int_{x}^{\infty} xy e^{-xy} dy$ d) $\int_{0}^{\infty} xy e^{-xy} dy$ 92 Two Eigen values of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8. Find the 3rd Eigen value a) 1 b) 2 c) 4 d) 5 The coefficient of x^3 in the expression of $(1 + x)^3(2 + x^2)^{10}$ is 93 b) 3^{14} c) $\binom{3}{2} + \binom{10}{1}$ d) $\binom{3}{3} + 2\binom{10}{1}$ a) 2^{14} $X_1^T X_2 = 0$ then the Eigen vectors X_1 and X_2 are 94 a) orthogonal b) null c) symmetric d) skew symmetric 95 Given that $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ Evaluate $A^3 - 6A^2 + 11A - 10I$ a) null matrix b) identity matrix c) -4I d) 4I 96 If X and Y are independent then cov(ax+b, cy+d)a). ab cov(x, y)b) cov(ax+b), cov(cy+d)c) cov(a+b, c+d) d) cov(ax+b).cov (cy+d) 97 If X is a r.v then var(ax + b) is b) $a^2 var(x) + b$ c) $a^2 Var(x)$ a) var(ax) + var(b)d) var(ax) .var(b) The Eigen values of A are 3, 2, 5. What is the sum of Eigen values of A^2 98 a) 37 b) 39 c) 36 d) 38 99 $\nabla^2 r^n = ?$ a) $n(n+1)r^{n-2}$ b) $(n+1)r^{n-2}$ c) $r^n/n!$ d) $(n-1)r^{n+2}$ According to Gauss Divergence theorem 100 a) $\iint_{V} \nabla \cdot \vec{F} \, dV = \iint_{S} \vec{F} \cdot \hat{n} \, dS \quad \text{b)} \iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dS = \int_{C} \vec{F} \cdot d\vec{r} \quad \text{c)} \int_{C} \vec{F} \cdot d\vec{r} = 0 \quad \text{d)} \int \vec{F} \times d\vec{r} = 0$

B.S. ABDUR RAHMAN UNIVERSITY, CHENNAI 600 048

DEPARTMENT OF MATHEMATICS & AS

Ph.D. Entrance Examinations – June 2016

Answer Sheet (Tick the appropriate answer inside the box)

1	a	b	c d	26 a	b	c	d
2	a	b	c d	27 a	b	c	d
3	a	b	c d	28 a	b	С	d
4	a	b	c d	29 a	b	С	d
5	a	b	c d	30 a	b	с	d
6	a	b	c d	31 a	b	c	d
7	a	b	c d	32 a	b	c	d
8	a	b	c d	33 a	b	c	d
9	a	b	c d	34 a	b	c	d
10	a	b	c d	35 a	b	c	d
11	a	b	c d	36 a	b	c	d
12	a	b	c d	37 a	b	c	d
13	a	b	c d	38 a	b	c	d
14	a	b	c d	39 a	b	c	d
15	a	b	c d	40 a	b	c	d
16	a	b	c d	41 a	b	c	d
17	a	b	c d	42 a	b	c	d
18	a	b	c d	43 a	b	С	d
19	a	b	c d	44 a	b	С	d
20	a	b	c d	45 a	b	c	d
21	a	b	c d	46 a	b	С	d
22	a	b	c d	47 a	b	С	d
23	a	b	c d	48 a	b	С	d
24	a	b	c d	49 a	b	c	d
25	a	b	c d	50 a	b	c	d

51 a	b	c	d	76 a	b	c	d
52 a	b	c	d	77 a	b	c	d
53 a	b	c	d	78 a	b	c	d
54 a	b	c	d	79 a	b	c	d
55 a	b	c	d	80 a	b	c	d
56 a	b	c	d	81 a	b	c	d
57 a	b	c	d	82 a	b	c	d
58 a	b	c	d	83 a	b	c	d
59 a	b	c	d	84 a	b	c	d
60 a	b	c	d	85 a	b	c	d
61 a	b	c	d	86 a	b	c	d
62 a	b	c	d	87 a	b	c	d
63 a	b	c	d	88 a	b	c	d
64 a	b	c	d	89 a	b	c	d
65 a	b	c	d	90 a	b	c	d
66 a	b	c	d	91 a	b	c	d
67 a	b	c	d	92 a	b	c	d
68 a	b	С	d	93 a	b	С	d
69 a	b	С	d	94 a	b	С	d
70 a	b	c	d	95 a	b	c	d
71 a	b	С	d	96 a	b	c	d
72 a	b	c	d	97 a	b	c	d
73 a	b	c	d	98 a	b	c	d
74 a	b	С	d	99 a	b	c	d
75 a	b	c	d	100 a	b	c	d