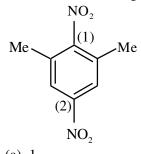
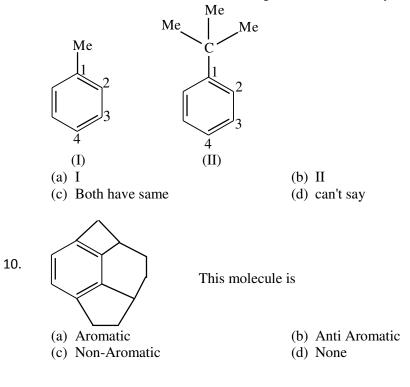
SAMPLE PROBLEMS (CHEMISTRY)


1. Inversion of sucrose is studied by observing the angle of rotation -at time t

 $\begin{array}{c} C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6\\ Sucrose & Glucose & Fructose \end{array}$ It was observed that $(\gamma_{\infty} - \gamma_0) \propto a$ and $(\gamma_{\infty} - \gamma_1) \propto (a - x)$, where γ_0 , $\gamma_t & \gamma_{\infty}$ -are the -angle of rotation in the beginning, -at time t and at the end of the reaction, respectively. From the following values, calculate the rate constant & the time at which the solution is optically in -active.

		Time (min)	0.0	46.0	∞				
		Rotation of polarized light (degree)	24.1	10.0	-10.7				
	(a) 0.011 min^{-1} & (c) 0.011 min^{-1} &		 (b) 0011 min⁻¹ & 10.72 min. (d) 11 min⁻¹ & 107 min. 						
2.	In polymeric (BeCl2)n, there are(a) three centre four electron bonds.(b) three centre three electron bonds.(c) two centre three electron bonds(d) two centre two electron bonds								
3.	The oxidation stat (a) +1 & 2.8 BM (c) +1 & 4.8 BM	(n & Magnetic moment of Brown Ring complex (b) +1 & 3.87 BM (d) +2 & 4.89 BM						
4.	Self-protective ox (a) boiling alumin (c) adding conc.		(b) amalgamating with mercury(d) reacting with chlorine						
5.	In gaseous phase (a) Me ₃ COH (c) MeCH ₂ OH		acidic? (b) Me ₂ CHOH (d) MeOH						
6.	 p - Xylene boils at a lower temperature than O-xylene (a) p - xylene molecule is symmetrical in Nature (b) o - xylene molecule is non-polar (c) p - xylene molecular is non - polar (d) o - xylene molecular is polar 								
7.		Br Br	\sum	Br	Br				
	(I)(a) I is soluble in(b) II is soluble in(c) Both are solution	n CH ₃ OH		(II)	-				


- (c) Both are soluble in n-octane
- (d) I is soluble in CH₃OH but-II is soluble in n-octane.

8. Which C–N bond length in the below given molecule is large

- (a) 1
- (b) 2
- (c) Both are equal in length
- (d) can't say
- 9.

Which molecule of below the has highest electron density of C₄.

SAMPLE PROBLEMS (CHEMISTRY)

1.	(c)	2.	(a)	3.	(b)	4.	(b)	5.	(a)
6.	(d)	7.	(d)	8.	(a)	9.	(a)	10.	(c)