, Vote: Ed-CET-2009 Test Questions along with key is given below, locate the question in your respective test book let series i.e.,(A,B,C,L with key. Objections regarding key are invited, with written authentic proof to the Convener Ed-CET-2009, Osmania University late! । by 23rd June 2009.

PART - C
MATHEMATICS
(Marks : 100)
51. A particular integral of $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=x e^{2 x}$ is
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=x e^{2 x}$ S es wess 2xose\%
(1) $\frac{x^{2}}{2} e^{2 x}$
(2) $\frac{x^{3}}{6} e^{2 x}$
(3) $\frac{-x^{3}}{6} e^{2 x}$
(4) $\frac{x^{2}}{3} e^{2 x}$
(Ans: 2)
52. The solution of $\left(y-\frac{1}{x}\right) d x+\frac{d y}{y}=0$ is $\left(y-\frac{1}{x}\right) d x+\frac{d y}{y}=0$ E సेळ
(1) $\left(x^{2}-c\right) y=2 x$
(2) $\left(x^{2}+c\right) y=2 x^{2}$
(3) $\left(x^{2}-c\right) y=-2 x^{3}$
(4) $\left(x^{2}+c\right) y=-2 x$
53. A particular integral of $\frac{d^{2} y}{d x^{2}}+y=\sin x$ is

(1) $\frac{x}{2} \sin x+\frac{x^{2}}{4} \cos x$
(2) $-\frac{x}{2} \cos x$
(3) $\frac{x}{2} \cos x$
(4) $\frac{x}{2} \sin x-\frac{x^{2}}{4} \cos x$
(Ans: 2)

A
MS
[P.T.O.
54. The general solution of $x^{2} y^{\prime \prime}=2 y^{\prime}$ is

(1) $y-a+b \log x+c x$
(2) $y=a-b \log x+c x^{3}$
(3) $y=a+b \log x+c x^{3}$
(4) $y=a+b \log x+c x^{2}$
(Ans: 3)
55. $\left(2 e^{y}-x\right) y^{\prime}=1$ is the differential equation of the family of curves.

(1) $x=c e^{-x}+e^{y}$
(2) $x=e^{y}+c e^{-y}$
(3) $x+e^{y}=c e^{y}$
(4) $x=e^{-y}+c e^{y}$
(Ans: 2)
56. Integrating factor of $\frac{d y}{d x}=-\frac{3 x y+y^{2}}{x^{2}+x y}$ is

(1) x^{-1}
(2) x^{-2}
(3) $\log x$
(4) x
(Ans: 4)
57. The general solution of $y^{\prime \prime}+y=\cosh x$ is $y^{\circ}+y=\cosh x \approx$ సेपण
(1) $y=c_{1} \cos x+c_{2} \sin x+\cos x$
(2) $y=c_{1} \cos x+c_{2} \sin x+\sin x$
(3) $y=c_{1} \cos x+c_{2} \sin x+\sinh x$
(4) $y=c_{1} \cos x+c_{2} \sin x+\frac{1}{2} \cosh x$
(Ans: 4)
58. A solution among the following satisfying $y^{\prime \prime}-y=\cosh x$ is

(1) $y=\sin x+\frac{x}{2} \sinh x$
(2) $y=\cos x+\frac{x}{2} \cosh x$
(3) $y=\cosh x+\frac{x}{2} \sinh x$
(4) $y=\sin x+\sinh x$
(Ans:3)

A
Ms
59. $(2 x+1)^{2} y^{\prime \prime}+2(2 x+1) y^{\prime}-y=0$ is the differential equation of the lamily of curves.

(1) $y=a(2 x+1)^{2}+\frac{b}{(2 x+1)^{2}}$
(2) $y=a(2 x+1)+b(2 x+1)^{2}$
(3) $y=a \sqrt{2 x+1}+\frac{b}{\sqrt{2 x+1}}$
(4) $y=a(2 x+1)+\frac{b}{2 x+1}$
(Ans: 3)
60. The equation of the curve passing through the origin and satisfying the differential equation $\left(1+x^{2}\right) y^{\prime}+2 x y=4 x^{2}$ is

(1) $\log \log x$
(2) $3 y\left(1+x^{2}\right)=4 x^{3}$
(3) $\frac{1}{x}$
(4) $y\left(1+x^{2}\right)=4 x^{3}$
(Ans: 2)
61. The sum of coefficients in the expansion of $(1+x)^{\mathrm{n}}$ is
$(1+x)^{\mathrm{n}}$ ఋళ
(1) ${ }^{2 n} \mathrm{C}_{n}$
(2) 2^{n-1}
(3) $n \cdot 2^{n-1}$
(4) 2^{n}
(Ans: 4)
62. If $A \Delta B=(A-B) \cup(B-A)$ for any two sets, A, B, then $A \Delta B \Delta A=$

(1) $A-B$
(2) A
(3) 0
(4) B
(Ans: 4)
63. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}-3 x-5=0$ then $\alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4}=$
$\alpha, \beta, \gamma, \delta$ e $x^{4}-3 x-5=0$ た
(1) 20
(2) 10
(3) -10
(4) 30
(Ans: 1)
64. If $x \in \mathbf{R},|x+1|+2|x-2|<6$ then x lies in the interval.

(1) $(-1,2]$
(2) $(-\infty,-1)$
(3) $(2, \infty)$
(4) $(-\infty,-2)$
(One Mark added To All)
A
65. If p is a prime number that leaves remainder $r \neq 1$ when divided by 6 then $r=$

(1) 2
(2) 3
(3) 4
(4) 5
(Ans: 4)
66. The square of a natural number never ends in the digit

(1) 1
(2) 4
(3) 9
(4) 2
(Ans: 4)
67. In a triangle ABC, D is the mid point of BC such that $\mathrm{AD}=\mathrm{BD}=\mathrm{CD}$. Then $\angle \mathrm{BAC}=$

(1) 60°
(2) 75°
(3) 90°
(4) 120°
(Ans: 3)
68. If α is a root of $x^{2}+x+1=0$ then $\alpha^{2008}+\alpha^{2009}=$

(1) 1
(2) -1
(3) 0
(4) α
(Ans: 2)
69. The sum of all two digit odd natural numbers is

(1) 2475
(2) 2450
(3) 2420
(4) 2480
(Ans: 1)
70. Three cubes each of side 5 cm are joined end to end to form a cuboid. Then the surface area ol the cuboid, in square units, is

(1) 350
(2) 450
(3) 500
(4) 550
(Ans: 1)
71. In a triangle $\mathrm{ABC}, \tan A+\tan B+\tan C=$ $3 \%=A B C=e^{6} \tan \mathrm{~A}+\tan \mathrm{B}+\tan \mathrm{C}=$
(1) 0
(2) $\tan A \tan \mathrm{~B} \tan \mathrm{C}$
(3) $\tan \mathrm{A} \tan \mathrm{B}+\tan \mathrm{B} \tan \mathrm{C}+\tan \mathrm{C} \tan \mathrm{A}$
(4) 1
(Ans: 2)
72. $\sin \theta+\operatorname{cosec} \theta-2 \Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta=$
(1) 1
(2) 2
(3) 3
(4) 4
(Ans: 2)

A
ms
73. $\tan 7^{\circ} \tan 23^{\circ} \tan 60^{\circ} \tan 67^{\circ} \tan 83^{\circ}=$
(1) 0
(2) 1
(3) $\sqrt{3}$
(4) 1
(Ans: 3)
74. $\sin ^{2} 1^{\circ}+\sin ^{2} 2^{\circ}+\ldots+\sin ^{2} 90^{\circ}=$
(1) 90
(2) 45.5
(3) 45
(4) 0
(Ans: 2)
75. $\tan ^{-1} x=\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right) \Rightarrow x=$
(1) $\frac{12}{11}$
(2) $\frac{56}{33}$
(3) $\frac{46}{33}$
(4) $\frac{38}{33}$
(Ans: 2)
76. In a triangle ABC , under usual notation, $r r_{1} r_{2} r_{3}=$

(1) Δ^{2}
(2) Δ
(3) Δ^{3}
(4) Δ^{4}
(Ans: 1)
77. The general solution of $1+\cos 2 \theta=0$ is $\theta=$

(Ans: 1)
(1) $(2 n \pm 1) \frac{\pi}{2} ; n \in \mathbf{Z}$
(2) $n \pi \pm \pi, n \in \mathbf{Z}$
(3) $\left(2 n \pm \frac{1}{2}\right) \pi, n \in \mathbf{Z}$
(4) $2 n \pi \pm \frac{\pi}{3}, n \in \mathbf{Z}$
78. $\sinh x=4 \Rightarrow x=$
(Ans: 1)
(1) $\log (4+\sqrt{17})$
(2) $\log (4-\sqrt{17})$
(3) $\log (4+\sqrt{15})$
(4) $\log (4-\sqrt{15})$
79. $\cosh x=a \Rightarrow \sinh 2 x \sinh x=$
(1) $a^{2}-a$
(2) $a^{3}+a$
(3) $2\left(a^{3}-a\right)$
(4) $a^{2}-a$
(Ans: 3)
80. If w is a complex cube root of unity then the roots $27 z^{3}-8=0$ are

(1) $\frac{2}{3}, \frac{2}{3} w,-\frac{2}{3} w^{2}$
(2) $-\frac{2}{3}, \frac{2}{3} w, \frac{2}{3} w^{2}$
(3) $\frac{2}{3},-\frac{2}{3} w, \frac{2}{3} w^{2}$
(4) $\frac{2}{3}, \frac{2}{3} w, \frac{2}{3} w^{2}$
81. $\lim _{x \rightarrow \infty} \frac{5 x^{2}-\sin 3 x}{x^{2}+10}=$
(1) $-\frac{1}{10}$
(2) m
(3) 0
(4) 5
82. The sequence $1, \sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, \ldots ., \sqrt[n]{n}, \ldots \ldots$ converges to the following limit

(1) ∞
(2) 0
(3) 1
(4) 1
(Ans: 3)
83. $\lim _{x \rightarrow 0} \frac{a x^{2}-\tan ^{2} x}{x^{2}-b \sin ^{2} x}=1 \Rightarrow a+b=$
(1) 2
(2) -2
(3) 1
(4) -1
84. Supremum of the set $\left\{1+\frac{(-1)^{n}}{2 n} ; n \in N\right\}$ is

(Ans: 2)
(1) $\frac{5}{6}$
(2) $\frac{5}{4}$
(3) $\frac{7}{8}$
(4) $\frac{9}{8}$
85. If $\operatorname{sgn} x$ is defined as 1 or 0 or -1 according as $x>0$ or $x=0$ or $x<0$ respectively and if $[x]$ is the greatest integer not exceeding x then the limit of $[x]+\operatorname{sgn} x$ at $x=0$ is

(1) 0
(2) -2
(3) 2
(4) Does not exist
86. The number of limit points of the set $\left\{\frac{(-1)^{n}}{n}: n \in \mathbf{Z}\right\}$
$\left\{\frac{(-1)^{n}}{n}: n \in \mathbf{Z}\right\} \omega$
(Ans: 3)
(1) 3
(2) ∞
(3) 1
(4) 0
87. $\int_{-2}^{2} x[x] d x=$
(1) $\frac{5}{2}$
(2) 3
(3) 4
(4) 5
(Ans: 4)
88. $\lim _{x \rightarrow 0+}\left(\frac{1}{x}-\frac{1}{\tan ^{-1} x}\right)=$
(1) 1
(2) 2
(3) 0
(4) -1
(Ans: 3)
89. $\int_{1}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} d x=$
(1) $\sqrt{3}-\sqrt{2}$
(2) $\frac{4}{3}(3 \sqrt{3}+2 \sqrt{2})$
(3) $\frac{4}{3}(3 \sqrt{3}-2 \sqrt{2})$
(4) 0
(Ans: 3)
90. If $f:[-2,2] \rightarrow \mathbf{R}$ is delined by $f(x)=e^{x}, x \in \mathbf{R}$ then a value of $c \in(-2,2)$ such that $4 f^{\prime}(c)=f(2)-f(-2)$ is
 20:5
(Ans: 2)
(1) $\log (\cosh 2)$
(2) $\log \left(\frac{1}{2} \sinh 2\right)$
(3) $2^{-1} \log (\sinh 2)$
(4) $2^{-1} \log (\sin 2 x)$
91. If S is a set consisting of n elements, then the numbers of functions from $S \times S$ into S is

(1) n^{2}
(2) n^{n}
(3) $n^{n^{2}}$
(4) $n^{2 n}$
(Ans: 3)
92. $f(x)=\frac{a^{x}+a^{-x}}{2} \rightarrow f(x+y)+f(x-y)=$
(1) $f(x) f(y)$
(2) $2 f(x) f(y)$
(3) $f(x)+f(y)$
(4) $2(f(x)+f(y))$
93. S_{3}, the symmetric group on three letters is an example of

(1) a non-abelian group

(2) a cyclic group
Wisco సix

(3) an abclian group

(4) a simple group
56\% సనurio
94. Let G be a group of order 15 and $H(\neq\{e\})$ a subgroup of G with $H \neq G$. Then a possible order of H is
 II
(I) 7
(2) 10
(3) 6
(4) 3
(Ans: 4)
95. Let S_{n} be the symmetric group on n letters, G the multiplicative group of integers $\{1,1\}$. If, to cach $\sigma \in S_{i \prime}, \psi(\sigma)$ is 1 or -1 according as σ is an even or odd permutation, then the kernel of the homomorphism ψ is

(1) $\{$ e\}
(2) $\{1\}$
(3) The set of all even permutations
(4) The set of all oidd permutations
(Ans: 3)

96. If $w(\neq 1)$ is a 37 th root of unily and if G is the cyclic group generated by w under multiplication then the number of generators of G is
$w(\neq 1)$ six 18 375
(1) 1
(2) 2
(3) 36
(4) 9
(Ans: 3)
97. The number of fields of order 121 upto isomorphism is

(1) 1
(2) 0
(3) ∞
(4) 11
(Ans: 1)
98. If $\left(x^{2}+1\right)$ is the ideal generated by $x^{2}+1$ in the ring $\mathbf{R}[x]$, then $\frac{\mathbf{R}[x]}{\left\langle\lambda^{2}+1\right\rangle}$ is isomorphic to one of the following.

xeycursc
(Ans: 2)
(1) \mathbf{R}
(2) C.
(3) Q
(4) Z
99. An irreducible polynomial over (Q) among the following is:

(1) $x^{4}-4 x^{2}+3$
(2) $x^{3}-x^{2}+x-1$
(3) $x^{3}-6 x+3$
(4) $x^{4}+2 x^{2}-3$
(Ans: 3)
100. The minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbf{Q} is

(Ans: 1)
(1) $x^{4}-10 x^{2}+1$
(2) $x^{4}+10 x^{2}+1$
(3) $x^{4}-10 x^{2}-1$
(4) $x^{4}+10 x^{2}-1$
101. $y-\tan ^{-1}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right) \Rightarrow \frac{d y}{d x}=$
(1) $\frac{1}{2 \sqrt{1-x}}$
(2) $\frac{-1}{2 \sqrt{1-x^{2}}}$
(3) $\frac{1}{\sqrt{1-x^{2}}}$
(4) $\frac{1}{2 \sqrt{1-x^{2}}}$
(Ans: 2)
102. $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta \rightarrow \frac{d y}{d x}=$
(1) $\left(\frac{x}{y}\right)^{\frac{1}{3}}$
(2) $\left(\frac{y}{x}\right)^{\frac{1}{3}}$
(3) $-\left(\frac{x}{y}\right)^{\frac{1}{3}}$
(4) $-\left(\frac{y}{x}\right)^{\frac{1}{3}}$
(Ans: 4)
103. $y-x^{x^{2}} \rightarrow \frac{d y}{d x}=$
(1) $x^{x^{2}} \log e x^{2}$
(2) $x^{x^{2}-1} \log e x^{2}$
(3) $x^{x^{2}}\left(1+\log e x^{2}\right)$
(4) $x^{2} \cdot x^{x^{2}-1}$
(Ans: 2)
p.T.O.
104. $x^{3}+y^{7}=3 a x y \Rightarrow \frac{d y}{d x}=$
(1) $-\frac{x+a y}{a y-x^{2}}$
(2) $-\frac{x^{2}-a y}{y^{2}-a x}$
(3) $\frac{x^{2}+a y^{2}}{a x+y}$
(4) $\frac{x^{2}-a x}{y^{2}-a y}$
105.
$y-\left(x+\sqrt{1+x^{2}}\right)^{n} \Rightarrow\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}=$
(1) n^{2}
(2) $n^{2} y$
(3) $-n^{2} y$
(4) $-n^{2}$
(Ans: 2)
106. $x=\sin ^{-1} t, y=\left.\sqrt{1-t^{2}} \Rightarrow \frac{d^{2} y}{d x^{2}}\right|_{i=\frac{1}{2}}-$
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1}{2}$
(3) $-\frac{1}{2}$
(4) $\frac{-\sqrt{3}}{2}$
(Ans: 4)
107. The rates of change in volume and in radius of a sphere are equal when the radius is

山S గ゙
(1) $\frac{\pi}{\sqrt{2}}$
(2) $\sqrt{2} \pi$
(3) $2 \sqrt{\pi}$
(4) $\frac{1}{2 \sqrt{\pi}}$
(Ans: 4)
108. Il the line $\frac{x}{a}+\frac{y}{b}-1$ is a tangent to the curve $y=b e^{\frac{-v}{a}}$ then the point of contact is

(1) $(0,0)$
(2) $(a . b)$
(3) $\left(b_{1} 0\right)$
(4) (1), b)
109. For $x>0$, the maximum value ol $f(x)-\frac{\log x}{x}$ is

$$
f(x)=\frac{\log x}{x},(x>0) \sin \sec 5
$$

(1) $2 e$
(2) e
(3) $\frac{1}{e}$
(4) $\frac{1}{2 e}$

A
(Ans: 3)
MS
110. If f is differentiable at a then $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}=$

(Ans: 3)
(1) 0
(2) $f^{\prime}(a)$
(3) $f(a)-a f^{\prime}(a)$
(4) $\quad f(a)-f^{\prime}(a)$
111. The projection of $2 \vec{i}-3 \vec{j}+6 \vec{k}$ on the vector $\vec{i}+2 \vec{j}+2 \vec{k}$ is

(1) $\frac{18}{5}$
(2) $\frac{20}{3}$
(3) $\frac{8}{3}$
(4) $\frac{4}{3}$
(Ans: 3)
112. If $\vec{F}=3 x y \vec{i}+y^{2} \vec{j}$, then $\int_{C} \vec{F} \cdot d \vec{r}=$ \qquad along the are C of the parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$
 $\int_{C} \vec{F} \cdot d \vec{r}=$ \qquad
(1) $\frac{-25}{3}$
(2) $\frac{25}{6}$
(3) $\frac{-25}{6}$
(4) $\frac{25}{3}$
(Ans: 2)
113. Suppose O is the centre of a circle and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) are four points on it. If $\angle \mathrm{DOC}=140^{\circ}$ then $\angle \mathrm{DAC}+\angle \mathrm{DBC}=$
 $\angle \mathrm{DAC}+\angle \mathrm{DBC}=$
(1) 760°
(2) 120°
(3) 140°
(4) 180°
(Ans: 3)
114. Two circles of equal radii with centres A, B intersect at P and Q . If $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{PQ}=8 \mathrm{~cm}$, then the radius of either circle (in cm) is

(1) 10
(2) 7
(3) 6
(4) 5
115. The ratio in which $Y Z$ plane divides the join of the points $(2,4,5)$ and $(3,5,-4)$ is

(1) $2: 3$
(2) $3: 2$
(3) $-2: 3$
(4) $4:-3$
116. The angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$ is

(Ans: 2)
(1) $\pi / 6$
(2) $\pi / 3$
(3) $\pi / 4$
(4) $\pi / 2$
117. The cquations of X -axis in its normal form are

(Ans: 4)
(1) $\frac{x}{0}=\frac{y}{1}=\frac{z}{1}$
(2) $\frac{x}{1}=\frac{y}{0}=\frac{z}{1}$
(3) $\frac{x}{1}=\frac{y}{1}=\frac{z}{0}$
(4) $\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$
118. Volume of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-4 x+12 y-8 z+8=0$ (in cubic units) is approximately

(1) $\frac{880 \sqrt{10}}{21}$
(2) $\frac{440 \sqrt{10}}{21}$
(3) $\frac{880}{21}$
(4) $\frac{440}{21}$
(Ans: 1)
119. The shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$ is

(1) $\frac{2}{\sqrt{3}}$
(2) $\frac{1}{\sqrt{6}}$
(3) $\frac{2}{3}$
(4) $\frac{1}{2 \sqrt{6}}$
(Ans: 2)
120. The gencral equation of the cone passing through the coordinate axes is

(1) $a x^{2}+b y^{2}+c z^{2}=1$
(2) $a x^{2}+b y^{2}+c z^{2}=0$
(3) $f y z+g z x+h x y=1$
(4) $f y z+g z x+h x y=0$

A
121. The equation of a straight line passing through the point of intersection of the lines $x+2 y-19=0$, $x-2 y-3=0$ and is at a distance 5 units from the point $(-2,4)$ is

(1) $y-4=\frac{5}{12}(x-11)$
(2) $y+4=\frac{5}{12}(x-11)$
(3) $y-4=\frac{5}{6}(x-11)$
(4) $y+4=\frac{5}{6}(x-11)$
(Ans: 1)
122. The orthocentre of the triangle, having the equations $2 x-y=9, x+y=9,2 y-x=9$ as the equations of its sides, is

(1) $(4,4)$
(2) $(5,5)$
(3) $(6,6)$
(4) $(7,7)$
(Ans: 2)
123. The distance between the parallel lincs $9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$ is

(1) $\frac{1}{5}$
(2) $\frac{1}{2 \sqrt{10}}$
(3) $\frac{1}{\sqrt{10}}$
(4) $\frac{2}{\sqrt{10}}$
124. If $x: y-1=0$ and $x-y+3=0$ are tangents to a circle S, then the radius of S is

(1) $2 \sqrt{2}$
(2) $\sqrt{2}$
(3) $\frac{1}{\sqrt{2}}$
(4) $4 \sqrt{2}$
(Ans: 2)
125. The equation of the chord of the circle $x^{2}+y^{2}=25$ having (1,-1) as the mid point of the chord is

(Ans: 3)
(1) $x-y-2=0$
(2) $x-y-2=0$
(3) $x \quad y-2=0$
(4) $x \quad y-4=0$
126. If a coaxal system of circles has $(0,0)$ as one of its limiting points and $x+y=1$ as the radical axis then the other limiting point is

(1) $(1,1)$
(2) (2.2)
(3) $(3,3)$
(4) $(-1,-1)$
(Ans: 1)

A
MS
[P.T.O.
127. The focus of the parabola $y^{2}-x-2 y-2=0$ is aorecsue $y^{2}-x-2 y-2-0$ जिड
(1) $\left(1, \frac{5}{4}\right)$
(2) $\left(\frac{5}{4}, 1\right)$
(3) $(1,1)$
(4) $\left(\frac{5}{4}, \frac{5}{4}\right)$ (Ans: 2)
128. A circle is inseribed in an ellipse with the minor axis as the diameter of the circle. Then the eccentricity of the cllipse is

(1) $\frac{2}{\sqrt{5}}$
(2) $\frac{1}{\sqrt{5}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{1}{\sqrt{3}}$ (DELETED
(One Mark added To All)
129. The equation of a circle in polar coordinates is $r=5 \cos \theta-5 \sqrt{3} \sin 0$. Then its centre is

(1) $\left(5, \frac{-\pi}{6}\right)$
(2) $\left(5, \frac{\pi}{4}\right)$
(3) $\left(5, \frac{-\pi}{3}\right)$
(4) $\left(5, \frac{\pi}{2}\right)$
(Ans: 3)
130. The centre of the hyperbola $9 x^{2}-16 y^{2}+18 x+32 y-151=0$ is

(Ans: 1)
(1) $(-1,1)$
(2) $(1,-1)$
(3) $(1,1)$
(4) $(1,-1)$
131. If A and 13 are square matrices of order n and if r_{1}, r_{2}, r_{3} are ranks of $A, B, A B$ respectively then $r_{3} \geq$

(1) $2 n-r_{1}+r_{2}$
(2) $r_{1}+r_{2}-n$
(3) $2 n-\left(r_{1}+r_{2}\right)$
(4) $r_{1}+r_{2}$
(Ans: 2)
132. I.et A be a square matrix of order n, Adj A be its adjoint matrix. If rank of A is n then the rank of $\operatorname{adj} A$ is

(1) $n-2$
(2) $n-1$
(3) n
(4) $<n-1$
(Ans: 3)
133. If $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathbf{R}$ is the linear transformation given by $\mathrm{T}(1,1)=3, \mathrm{~T}(1,2)=1$ then $\mathrm{T}(x, y)=$

(1) $x+2 y$
(2) $3 x-y$
(3) $5 x-2 y$
(4) $6 y-3 x$
134. If $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the linear transformation given by $f(x, y)=\left(\begin{array}{ll}x-2 y, y & 2 x\end{array}\right)$ then the kernel of f is:

(1) $\{0\}$
(2) $\{(0,0)\}$
(3) $\{(2,1),(1,2)\}$
(4) $\{(1,1),(0,0)\}$
(Ans: 2)
135. If $\mathrm{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the lincar transformation defined by $\mathbf{T}(x, y)=(x-y: y+2 x)$ then the nullity of T is

(1) \mathbf{R}
(2) $\{(0,0)\}$
(3) 0
(4) 1
(Ans: 3)
136. If $\mathrm{T}(x, y)=(3 x-y, 2 x+4 y, 5 x-6 y)$ defines a linear transformation from \mathbf{R}^{2} into R^{3} then the matrix of linear transformation T with respect to the standard bases is

(1) $\left(\begin{array}{ccc}3 & 2 & 5 \\ -1 & 4 & 6\end{array}\right)$
(2) $\left(\begin{array}{rrr}3 & 2 & 5 \\ -1 & -4 & 6\end{array}\right)$
(3) $\left(\begin{array}{cc}3 & -1 \\ -2 & -4 \\ 5 & 6\end{array}\right)$
(4) $\left(\begin{array}{cc}3 & -1 \\ 2 & 4 \\ 5 & -6\end{array}\right)$
(Ans: 4)
137. Eigen values of the linear operator $\mathbf{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by $\mathrm{T}(x, y, z)=(2 x+y, y-z, 2 y+4 z)$ are

(1) $3,3,2$
(2) $1,2,3$
(3) $2,2,3$
(4) $1,1,3$
(Ans: 3)
138. If $\lambda \neq-2$. and the system of equations

$$
\begin{aligned}
& (1-\lambda) x-3 y+3 z=0 \\
& 3 x-(5+\lambda) y+3 z=0 \\
& 6 x-6 y+(4-\lambda) z=0
\end{aligned}
$$

has non-zero solutions then $\lambda=$

$$
\begin{aligned}
& (1-\lambda) x-3 y+3 z=0 \\
& 3 x-(5+\lambda) y+3 z=0 \\
& 6 x-6 y+(4-\lambda) z=0
\end{aligned}
$$

\Leftrightarrow ふixy
(1) 3
(2) 4
(3) -4
(4) -3
(Ans: 2)
A
139.
$A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right] \Rightarrow A^{4}-6 A^{3}+9 A^{2}=$
(1) 4 A
(2) 3 A
(3) 2 A
(4) A^{-1}
(Ans: 1)
140. If $\mathrm{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is the linear transformation given by $\mathrm{T}(x, y)=(x-y, y-2 x, 2 x-3 y)$ then the rank of T is

(1) 1
(2) 2
(3) 0
(4) 3
(Ans: 2)
141. The integers $m \geq 1$ such that $x^{2}+x \mid 1$ divides $(x+1)^{m}-x^{m}-1$ are of the form

(1) $6 k+2$ or $6 k+3, k \in \mathbf{N}$
(2) $6 k+3$ or $6 k+4, k \in \mathrm{~N}$
(3) $6 k+1$ or $6 k+5, k \in \mathbf{N} \cup\{0\}$
(4) m is any integer
(Ans: 3)

$$
m \text { bex wroso }
$$

142. If $w(\pm 1)$ is an nth root of unity then $1+2 w+3 w^{2}+\ldots-n w^{n-1}$ $w(\neq 1)$ sind bexq $n \leq$ urnuci $1+2 w+3 w^{2}+\ldots+n w^{n-1}=$
(1) $\frac{n}{w-1}$
(2) $\frac{n}{1-w}$
(3) $\frac{n}{1+w}$
(4) $\frac{-n}{1+w}$
(Ans: 1)
143. $\int \frac{e^{v}+1}{e^{x}-1} d x=f(x)+c \rightarrow f(x)=$
(1) $\log \left(e^{x}-1\right)+x$
(2) $2 \log \left(e^{x}-1\right)+s$
(3) $\log \left(e^{x}-1\right)+2 x$
(4) $2 \log \left(e^{x}-1\right)-x$
144. $u=\tan ^{-1}(x+y) \Rightarrow x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(1) $\sin 2 u$
(2) $\cos 2 u$
(3) $\frac{1}{2} \sin 2 u$
(4) $\frac{1}{2} \cos 2 u$
(Ans: 3)

A
MS
145. $\int \frac{x-1}{x\left(x e^{x}-1\right)} d x=\log |g(x)|-c \Rightarrow g(x)-$
(1) $\frac{x e^{x}}{x e^{y}+1}$
(2) $\frac{x e^{y}+1}{x e^{x}}$
(3) $\frac{(x+1) e^{x}}{x}$
(4) $\frac{e^{x}+1}{x+1}$
(Ans: 1)
146. $\int_{0}^{\pi / 4} \log (1+\tan x) d x=$
(1) $\frac{\pi}{2} \log 2$
(2) $\frac{\pi}{4} \log 2$
(3) $\frac{\pi}{8} \log 2$
(4) $\frac{\pi}{16} \log 2$
(Ans: 3)
147. Using the empirical relation between Mean, Median and Mode, Mean $=x$ (3 Median Mode) implies x
 Buch $x=$
(1) $\frac{1}{3}$
(2) $\frac{1}{2}$
(3) 2
(4) 3
(Ans: 2)
148. Three coins are tossed simultaneously. The probability of getting exactly one head is

(1) $\frac{1}{8}$
(2) $\frac{3}{8}$
(3) $\frac{5}{8}$
(4) $\frac{7}{8}$
(Ans: 2)
A
us
[P.T.O.
149. The variance of the first n natural numbers is

(1) $\frac{n^{2}+1}{12}$
(2) $\frac{n^{2}+1}{6}$
(3) $\frac{n^{2}-1}{6}$
(Ans: 4)
(4) $\frac{n^{2}-1}{12}$
150. If two dice are thrown simultancously then the probability of getting a total of 7 is

(1) $\frac{7}{36}$
(2) $\frac{1}{6}$
(3) $\frac{5}{36}$
(Ans: 2)
(4) $\frac{1}{9}$

