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1. Let 0 < a1 < a2 < · · · < an be real numbers. Show that the equation

a1
a1 − x

+
a2

a2 − x
+ · · ·+ an

an − x
= 2015

has exactly n real roots.

2. Let R denote the set of real numbers. Find all functions f : R → R,
satisfying

|f(x)− f(y)| = 2|x− y|

for all x, y ∈ R. Justify your answer.

3. Three circles of unit radius tangentially touch each other in the plane.
Consider the triangle enclosing them such that each side of the triangle
is tangential to two of these three circles. See picture below:

Find the length of each side of the triangle.

4. Let a and b be real numbers. Define a function f : R → R, where R
denotes the set of real numbers, by the formula f(x) = x2 + ax + b.
Assume that the graph of f intersects the co-ordinate axes in three
distinct points. Prove that the circle passing through these three points
also passes through the point (0, 1).

5. Find all positive integers n for which 5n + 1 is divisible by 7. Justify
your answer.

6. Let p(x) = x7+x6+b5x
5+ · · · +b1x+b0 and q(x) = x5+c4x

4+ · · · +
c1x + c0 be polynomials with integer coefficients. Assume that p(i) =
q(i) for integers i = 1, 2, . . . , 6. Then, show that there exists a negative
integer r such that p(r) = q(r).

[P. T. O.]



7. Let S = {1, 2, . . . , j}. For every non-empty subset A of S, let m(A)
denote the maximum element of A. Then, show that∑

m(A) = (j − 1)2j + 1

where the summation in the left hand side of the above equation is
taken over all non-empty subsets A of S.

8. (a) Let m1 < m2 < · · · < mk be positive integers such that 1
m1

, 1
m2

, · · · , 1
mk

are in arithmetic progression. Then prove that k < m1 + 2.

(b) For any integer k > 0, give an example of a sequence of k positive
integers whose reciprocals are in arithmetic progression.


