Answer as many as you can

Time : 2 hours

Write your Name, Registration number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer-booklet.

ALL ROUGH WORK IS TO BE DONE ON THIS BOOKLET
AND/OR THE ANSWER-BOOKLET.
CALCULATORS ARE NOT ALLOWED.

Q 1. Suppose that in a sports tournament featuring n players, each pair plays one game and there is always a winner and a loser (no draws). Show that the players can be arranged in an order $P_{1}, P_{2}, \cdots, P_{n}$ such that player P_{i} has beaten P_{i+1} for all $i=1,2, \cdots, n-1$.

Q 2. Consider a cubic polynomial $p(x)=a x^{3}+b x^{2}+c x+d$ where a, b, c, d are integers such that $a d$ is odd and $b c$ is even. Prove that not all roots of $p(x)$ can be rational.

Q 3. Given the polynomial

$$
f(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n},
$$

with real coefficients, and $a_{1}^{2}<a_{2}$, show that not all roots of $f(x)$ can be real.
Q 4. Let d be a positive integer. Prove that there exists a right-angled triangle with rational sides and area equal to d if and only if there exists an arithmetic progression x^{2}, y^{2}, z^{2} of squares of rational numbers whose common difference is d.

Q 5. Let $A B C D$ be a square two of whose adjacent vertices, say A, B, are on the positive X-axis and the positive Y-axis, respectively. If C has co-ordinates (u, v) in the first quadrant, determine the area of $A B C D$ in terms of u and v.

Q 6. Let a, b, c be the sides of a triangle and A, B, C be the angles opposite to these sides respectively. If

$$
\sin (A-B)=\frac{a}{a+b} \sin A \cos B-\frac{b}{a+b} \cos A \sin B
$$

then prove that the triangle is isosceles.
Q 7. Let f be a differentiable function such that $f(f(x))=x$ for $x \in[0,1]$. Suppose $f(0)=1$. Determine the value of $\int_{0}^{1}(x-f(x))^{2016} \mathrm{dx}$.

Q 8. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers defined recursively by

$$
a_{n+1}=\frac{3 a_{n}}{2+a_{n}},
$$

for all $n \geq 1$.
(i) If $0<a_{1}<1$, then prove that $\left\{a_{n}\right\}_{n \geq 1}$ is increasing and $\lim _{n \rightarrow \infty} a_{n}=1$.
(ii) If $a_{1}>1$, then prove that $\left\{a_{n}\right\}_{n \geq 1}$ is decreasing and $\lim _{n \rightarrow \infty} a_{n}=1$.

