

GS-2013 (Chemistry)

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Written Test in CHEMISTRY - December 9, 2012

Duration: Three hours (3 hours)

Name :	Ref. Code :	
Turine 1		

Please read all instructions carefully before you attempt the questions.

- Please fill-in details about name, reference code etc. on the answer sheet. The Answer Sheet is machine-readable. Read the instructions given on the reverse of the answer sheet before you start filling it up. Use only HB pencils to fill-in the answer sheet.
- 2. Indicate your ANSWER ON THE ANSWER SHEET by blackening the appropriate circle for each question. <u>Do not mark more than one circle for any question</u>: this will be treated as a wrong answer.
- 3. This is a multiple choice question paper with one section having a total of 40 questions. Each correct answer will get you 3 marks. Every wrong answer will get you -1 mark. Marks are not awarded or deducted when a question is not attempted. It is better not to answer a question if you are not sure.
- 4. We advise you to first mark the correct answers on the QUESTION PAPER and then to TRANSFER these to the ANSWER SHEET only when you are sure of your choice.
- 5. Rough work may be done on blank pages of the question paper. If needed, you may ask for extra rough sheets from an Invigilator.
- Use of calculators is permitted. Calculator which plots graphs is NOT allowed. Multiple-use devices such as cell phones, smart phones etc., CANNOT be used for this purpose.
- 7. Do NOT ask for clarifications from the invigilators regarding the questions. They have been instructed not to respond to any such inquiries from candidates. In case a correction/clarification is deemed necessary, the invigilator(s) will announce it publicly.

SOME USEFUL DATA

 $e = 1.6 \times 10^{-19} C$

 $c = 3 \times 10^8 \,\mathrm{m \, s^{-1}}$

 $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Avogadro number =
$$6.02 \times 10^{23} \text{ mol}^{-1}$$

$$RT/F = 0.0257 \text{ V at } 25^{\circ}\text{C}$$

Boltzmann constant
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

$$E_n = -\frac{Z^2}{2n^2}$$
 a.u. for hydrogen like atom

Mass of an electron =
$$9.109 \times 10^{-31}$$
 kg

Average velocity =
$$\sqrt{\frac{8kT}{\pi \cdot m}}$$

Standard reduction potential of
$$Al^{3+} + 3e^{-} \rightarrow Al$$
 is -1.66 V at 25°C Standard reduction potential of $Fe^{2+} + 2e^{-} \rightarrow Fe$ is -0.44 V at 25°C

- 1. Which of the following will be strongest acid in pure liquid HF:
 - A) H_2O
 - B) SbF₅ \checkmark
 - C) CH₃COOH
 - D) NaF
- 2. Which of the following experimental observations best demonstrates the wavelike character of electrons?
 - A) The photoelectric effect
 - B) The flow of electrons in a metal wire
 - C) The diffraction pattern of electrons scattered from a crystalline solid 🗸
 - D) The deflection of an electron beam by electrical plates
- 3. What terms can arise from the configuration 2p¹3p¹?

- 4. What is the degeneracy of the energy level with n=6 (n being the principal quantum number) in a hydrogenic atom or ion?
 - A) 16
 - B) 9
 - C) 36 🗸
 - D) 25

- 5. Compare the equilibrium bond lengths of AB-type of diatomic molecules N₂, NO, O₂, Cl₂ and CN with their cations (AB⁺) and anions (AB⁻). Which of the following statements is correct in general?
 - A) The equilibrium bond lengths of all AB⁺ species will be shorter, and that of all AB species will be longer than that of the corresponding AB species.
 - B) The equilibrium bond lengths of all AB species will be shorter, and that of all AB⁺ species will be longer than that of the corresponding AB species.
 - C) The equilibrium bond lengths of O_2^+ , Cl_2^+ and CN^- ions will be shorter than the corresponding neutral species. The equilibrium bond lengths of N_2^+ , NO^+ and Cl_2^- ions will be longer than the corresponding neutral species.
 - D) The equilibrium bond lengths of O_2^+ , Cl_2^+ and CN^- ions will be longer than the corresponding neutral species. The equilibrium bond lengths of N_2^+ , NO^+ and Cl_2^- ions will be shorter than the corresponding neutral species.
- 6. The method of initial rates is used to determine the rate law for the reaction given below

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

The following initial rates were determined at the given partial pressures (p) of reactants.

$p_{\mathrm{H2}}(\mathrm{mmHg})$	Initial rate (M/min)
400	0.46
200	0.92
400	1.85
	200

These data imply which of the following rate laws?

- A) rate = k $p_{\text{NO}} p_{\text{H2}}$
- B) rate = $k p_{NO} p^{2}_{H2}$
- C) rate = $k p^2_{NO} p_{H2}$ D) rate = $k p^2_{NO} p^2_{H2}$
- 7. Which of the following molecular species are expected to be paramagnetic? O_2^+ , O_2^- and O_2^{2-} ?
 - A) All of them
 - B) Only O_2^+ and O_2^-
 - C) Only O_2^+ and O_2^{2-}
 - D) Only O_2^- and O_2^{2-}

8. What are the elements of symmetry present in the following molecules and which of them is chiral?

- A) A has a 2-fold rotation axis and B has a plane of symmetry; A is chiral
- B) A has a plane of symmetry and B has a centre of inversion; B is chiral
- C) A has a plane of symmetry and B has a 2-fold rotation axis; A is chiral
- D) A has a plane of symmetry and B has a 2-fold rotation axis; B is chiral
- 9. The speed of a reaction that involves an enzyme increases as
 - A) Temperature decreases
 - B) pH becomes less than optimal
 - C) Substrate concentration increases
 - D) All of the above
- 10. The product of the following reaction will be able to couple with which amino acids?

- A) Tyrosine and Phenylalanine 🗸
- B) Tyrosine and Serine
- C) Lysine and Serine
- D) Phenylalanine and Lysine

- 11. If the CO stretching frequency of Ni(CO)₃(P(OMe)₃) is *A*, and that of Ni(CO)₂(PMe₃)₂ is *B*, then
 - A) *A>B* **√**
 - B) A=B
 - C) A<B
 - D) None
- 12. Predict the products of the following condensation reaction where y : x could be either 1 or 2:

- 13. The Friedel-Crafts reactions are common in organic chemistry. Which of the following is expected to be a better catalyst?
 - A) AlBr₃
 - B) AlI₃
 - C) AlCl₃ \checkmark
 - D) MgCl₂
- 14. Which of the following statements is always true regarding conductors and semiconductors?
 - A) Semi-conductors are half as good as conductors when comparing their electron mobility.
 - B) Conductors have large band gaps and semi-conductors have small band gaps.
 - C) Conductors and semi-conductors do not conduct electricity at high temperatures.
 - D) None of the above statements are true.

15. The standard Gibbs free energies of the following reactions, ΔG^0 , have been determined at various temperatures.

(i)
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

(ii)
$$C(s) + \frac{1}{2}O_2(g) \to CO(g)$$

(iii)
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

Which of the following plots would represent most likely the temperature dependence of ΔG^0 ?

- 16. The reaction of sodium ethoxide with ethyliodide to form diethyl ether is termed
 - A) electrophilic substitution
 - B) nucleophilic substitution \checkmark
 - C) electrophilic addition
 - D) radical substitution
- 17. Compound 1 reacts with vinyl Grignard reagent to give two compounds *A* and *B* after hydrolysis. *A* gives compound 2 upon heating. Predict the structure of *A*.

- 18. Point of group of 1,2-propadiene is
 - A) C_{2h}
 - B) C_{2v}
 - C) D_{2h}
 - D) D_{2d} •
- 19. Which of the following statements is true regarding amphiphilic molecules?
 - A) An amphiphilic molecule consists of both a positive charge and a negative charge.
 - B) Amphiphilic molecules show spontaneous aggregation behaviour in any solvent and at all concentrations.
 - C) Amphiphilic molecules are insoluble in water.
 - D) Amphiphilic molecules are known to form liquid crystals.
- 20. Using crystal field theory, determine the type of d-orbital(s) which will have the lowest energy in the complex shown below. Based on the above, determine the comparative rates of reduction of the Mn(V) to Mn(IV) *versus* Mn(IV) to Mn(III) states.

- A) (d_{xy}) ; Mn(V) to Mn(IV) is slower than Mn(IV) to Mn(III) \checkmark
- B) (d_{xy}, d_{yz}, d_{zx}) ; Mn(V) to Mn(IV) is slower than Mn(IV) to Mn(III)
- C) (dz2, dx2-y2); Mn(V) to Mn(IV) is faster than Mn(IV) to Mn(III)
- D) (d_{xy}) ; Mn(V) to Mn(IV) is faster than Mn(IV) to Mn(III)
- 21. Which statement is true of the ground state of the Co²⁺ ion?
 - A) The number of unpaired electrons is 0 and the Co_{2}^{2+} ion is paramagnetic.
 - B) The number of unpaired electrons is 0 and the Co²⁺ ion is *not* paramagnetic.
 - C) The number of unpaired electrons is 3 and the Co^{2+} ion is paramagnetic.
 - D) The number of unpaired electrons is 3 and the Co²⁺ ion is *not* paramagnetic.
- 22. How many molecules of cetanol (of cross-sectional area $2.58 \square 10^{-19} \text{ m}^2$) can be adsorbed on the surface of a spherical drop of dodecane of diameter 35.6 nm?
 - A) $6.16 \square 10^4$
 - B) $1.23 \square 10^3$
 - C) $1.54 \square 10^4 \checkmark$
 - D) $4.90 \square 10^3$

23. In a chemistry lab, the aim of an experiment was to generate well structured, 5nm sized gold nanoparticles. A student experimented with the following synthesis:

1-nonanethiol ($C_9H_{19}SH$) and HAuCl₄ were first mixed (in a molar ratio of 10:1), and then gold ions were reduced by slowly adding NaBH₄. In this synthesis, after 2 hours no precipitate was observed and only a very faint pink colloidal solution was obtained. This solution was then evaporated onto a glass slide and the sample characterized by X-ray diffraction.

Given below are three XRD patterns. One out of these three patterns was obtained by the student when he/she characterized the sample on the glass slides. Which statement below is true?

- A) The synthesis did not yield gold nanoparticles as there was no precipitate. Therefore, the XRD pattern that will be obtained is that shown as curve (c) It is almost a flat baseline indicating no product.
- B) 5 nm gold nanoparticles were formed and XRD pattern shown as (a) represents the product. It signifies that the nanoparticles are crystalline and the face-centered cubic (fcc) crystal structure can be clearly used to index the peaks.
- C) 5 nm gold nanoparticles will show size-dependent line broadening and therefore if the product consisted of such particles, then curve (b) will be obtained
- D) None of the above statements are true.
- 24. Consider a classical harmonic oscillator with a mass *m* and a force constant *k* oscillating with a frequency *v*. Which of the following statements is NOT true for this system?
 - A) ν increases if m decreases.
 - B) The oscillator is most likely to be found at its equilibrium position.
 - C) The acceleration is maximum at its turning points.
 - D) ν does not depend on how large the amplitude of the oscillation is.

25. Photosynthesis is a process by which light energy gets funnelled into creating chemical potential for generation of proton gradients across membranes. Suppose photosynthesis is only 0.5% efficient in creating such gradients, calculate how many 530 nm photons will be required to create a pH gradient (per mole) as shown below across a cellular membrane under ambient temperature of 300 K?

- A) 1000 photons
- B) 10^{10} photons
- C) 10 photons \checkmark
- D) $6 \square 10^{23}$ photons
- 26. What is the result of the following reaction?

- C) Reaction is unfavourable under given reagents
- D) A and B both are plausible \checkmark
- 27. What are the limits of detection of the following common analytical methods used with capillary separations: fluorescence, mass spectrometry, UV-vis absorbance, and NMR, respectively, in mol?
 - A) $10^{-18} 10^{-23}$, $10^{-13} 10^{-21}$, $10^{-13} 10^{-16}$, $10^{-9} 10^{-11}$ B) $10^{-13} 10^{-21}$, $10^{-18} 10^{-23}$, $10^{-13} 10^{-16}$, $10^{-9} 10^{-11}$ C) $10^{-18} 10^{-23}$, $10^{-13} 10^{-21}$, $10^{-9} 10^{-11}$, $10^{-13} 10^{-16}$ D) $10^{-13} 10^{-21}$, $10^{-13} 10^{-16}$, $10^{-18} 10^{-23}$, $10^{-9} 10^{-11}$

28. Shown below in solid-line is the harmonic potential of a quantum oscillator for a diatomic molecule. If the harmonic potential is suddenly transformed into Morse potential shown in dashed-line how would the zero point energy and shape of wavefunctions change?

- A) Zero-point energy remains the same and wavefunctions do not change.
- B) Zero-point energy remains the same but wavefunction reflects a change on the high Q side.
- C) Zero-point energy changes and wavefunction reflects a change on the high Q side.
- D) Potentials never reflect any change in the shape of the wavefunction \checkmark
- 29. The cell potential for the following electrochemical system at 25 °C is:

$$Al(s) | Al^{3+} (0.01 M) || Fe^{2+} (0.1 M) | Fe(s)$$

- A) 1.23 V 🗸
- B) 1.21 V
- C) 1.22 V
- D) -2.10 V
- 30. Given three systems, A, B, and C, what could be they if the spacing between the neighbouring energy levels in A decreases with increasing energy, while that for B is constant, and that for C increases with increasing energy?
 - A) A= particle in a one-dimensional box, B= harmonic oscillator, C=electron in hydrogen atom
 - B) A= electron in hydrogen atom, B= harmonic oscillator, C= particle in a \checkmark one-dimensional box
 - C) A= particle in a one-dimensional box, B= electron in hydrogen atom, C= harmonic oscillator
 - D) A= electron in hydrogen atom, B= particle in a one-dimensional box, C= harmonic oscillator

- 31. Sodium metal crystallizes in a cubic unit cell. From X-ray diffraction, the unit cell parameter was determined to be 4.29 Å. If the density of the element is known to be 0.968 g/cm³, how many atoms are present in each unit cell?
 - A) Not enough information is given to calculate the value.
 - B) 1
 - C) 2 🗸
 - D) 3
- 32. Electrospray ionization mass spectroscopy produces multiply charged ions of proteins. On application of this technique to hemeprotein it gave a large number of peaks corresponding to different charge-states of the protein. The three consecutive peaks are observed at the m/z values:

The approximate m/z value of the consecutive fourth peak in the series would be:

- A) 1252
- B) 1374 🗸
- C) 1498
- D) 1325
- 33. A is a 5×5 matrix with elements $a_{ij} = a_{ji}$. Its eigenvalues are 0, ±1 and ±2. Which of the following statements best describes the properties of the matrix A?
 - A) A can be diagonalized by a unitary transformation.
 - B) A can be diagonalized by an orthogonal transformation.
 - C) A cannot be inverted.
 - D) All of the above.
- 34. Real gases behave differently from ideal gases because:
 - (i) the molecules of real gases are in constant motion.
 - (ii) molecules of real gases collide with the walls of the container.
 - (iii) molecules of real gases have volume.
 - (iv) molecules of real gases attract each other.
 - A) i and ii
 - B) iii only
 - C) iii and iv
 - D) all of the above

35. The following reaction, conducted in a vessel of capacity 10 litre, has reached equilibrium at 330 K.

$$CO(g) + H_2O(g) \Phi CO_2(g) + H_2(g)$$
 $\Delta H^0 = -41.2 \text{ kJ}$

The temperature of the vessel is then increased to 350 K. Which of the following statement is correct before the reaction reaches a new equilibrium at this elevated temperature?

- A) The rate constant of the forward reaction will decrease, and the rate constant of the reverse reaction will increase.
- B) Concentrations of all the species will increase, but increase will be more for the reactants than that for the products.
- C) Both A and B.
- D) None of the above.
- 36. Global warming is due to increase of
 - A) Methane in atmosphere
 - B) CO₂ in atmosphere
 - C) Water vapour
 - D) Methane and CO_2
- 37. The state of 2 moles of an ideal gas is changed from the point A to the point B along three different paths, as shown in the following P-V diagram. If the change of entropy of the gas in changing its state from state A to B along the path i is denoted ΔS_i , then which of the following statements is correct?

- A) $\Delta S_1 > \Delta S_2 > \Delta S_3$
- B) $\Delta S_1 < \Delta S_2 < \Delta S_3$
- C) $\Delta S_1 \neq \Delta S_2 \neq \Delta S_3$
- D) $\Delta S_1 = \Delta S_2 = \Delta S_3$
- 38. A reaction has a negative (and approximately temperature independent) enthalpy change. It does not proceed spontaneously at room temperature (25 °C). At which of the following temperatures is the reaction more likely to become spontaneous?
 - A) -50° C \checkmark
 - B) 50 °C
 - C) 100^{6} C
 - D) 1000 °C

39. In a Hückel tight binding representation with a single orbital per site and nearest neighbour interactions between sites, the Hamiltonian for a cluster of three Na atoms in linear and triangular forms is written as:

Assuming the nearest neighbour coupling β < 0, which form (linear or triangular) of the cluster is more probable for neutral Na₃ and for the anion Na₃⁻?

- A) Linear for Na₃ and triangular for Na₃
- B) Linear for both
- C) Triangular for Na₃ and linear for Na₃ ✓
- D) Triangular for both
- 40. The ¹H NMR spectrum of a compound with molecular formula C₃H₇NO shows the following features:

Chemical shift (ppm) 6.50 2.25 1.10 Shape broad singlet quartet triplet

Which of the following is in agreement with this information?

- A) $(CH_3)_2C=NOH$
- B) CH₃COCH₂NH₂
- C) CH₃CH₂CONH₂ ✓
- D) HCON(CH₃)₂

The following question does NOT carry any marks and is given to collect information only:

- 41. How much time did you take to complete this chemistry exam?
 - A) Less than 1 hour.
 - B) Between 1 to 2 hours.
 - C) Between 2 to 3 hours.
 - D) Insufficient time was given.