PHYSICS

1.	The physical quantity	having the dimension	$S\left[M^{-1}L^{-3}T^{+3}A^2\right]$ is			
	(a) Resistance		(b) Resistivity			
	(c) Electrical conduct	ivity	(d) Electromotive for	ce		
2.	•		the surface of the ear 's radius, the orbital vo	th is v. if this satellite		
	_ ~	_	<u>—</u> '	· _		
	(a) $\sqrt{\frac{2}{3}}v$	(b) $\sqrt{\frac{2}{5}} v$	(c) $\sqrt{\frac{2}{7}}v$	(d) $\sqrt{\frac{2}{9}}v$		
3.	A force 'F' acting or delivered by 'F' will o	a body depends on i depend on displacement	ts displacement 's' as	$F \propto S^{-\frac{1}{3}}$. The power		
	(a) $S^{2/3}$	(b) $S^{-3/2}$	(c) $S^{1/2}$	(d) S^{0}		
4.		velocity of the particle	_	at an angle θ with the projection and highest		
	(a) $\frac{V}{2}\sqrt{1+2\cos^2\theta}$	(b) $\frac{V}{2}\sqrt{1+\cos^2\theta}$	(c) $\frac{V}{2}\sqrt{1+3\cos^2\theta}$	(d) $V\cos\theta$		
5.	horizontal floor. The	coefficient of friction nen a horizontal force	between A and B is 0	8 kg which rests on a 0.2. While that between he block B, the force of		
	(a) zero	(b) 3.9 N	(c) 5 N	(d) 49 N		
6.	Temperature of the n	nixture of one mole of	f He and one mole of amount of heat delive	Hydrogen is increased red will be		
	(a) 600 cal	(b) 1200 cal	(c) 1800 cal	(d) 3600 cal		
7.	` '	elecays to $_{82}Pu^{206}$ by en	` '			
	(a) 9α and 12β parti	icle	(b) 9α and 6β partic	cle		
	(c) 6α and 9β partic	le	(d) 6α and 12β par	ticle		
8.	In Huygen's eyepiece, the distance between the two lenses is 'P', the effective focal length is 'Q', the focal length of field lens is 'R' and focal length of eye lens is 'S' then					
9.	(a) $R > P > Q > S$ (b) $P > Q > R > S$ (c) $Q > R > S > P$ (d) $R > S > P > Q$ A wire of length L and 3 identical cells of negligible internal resistances are connected in series. Due to the current, the temperature of the wire is raised by ΔT in a time 't'. A number 'N' of similar cells is now connected in series with a wire of the same material and cross – section but of length 2 L. The temperature of the wire is raised by the same amount in the same time. The value of N is					
	(a) 4	(b) 6	(c) 8	(d) 9		

- The binding energy per nucleon for X^{200} , A^{110} and B^{90} are 7.4 MeV, 8.2 MeV and 10. 8.2 MeV respectively. The energy released in the reaction $X^{200} \rightarrow A^{110} + B^{90} + energy$ is (a) 200 MeV (b) 160 MeV (c) 110 MeV (d) 90 MeV
- 11. If the momentum of an electron is changed by ΔP , then the de Broglie wavelength associated with it changes by 0.5%. The possible initial momentum of the electrons will
 - (a) $\frac{\Delta P}{200}$
- (b) $\frac{\Delta P}{100}$
- (c) 199 Δ*P*
- (d) $400 \Delta P$
- A wire of length 1 m and radius 1 mm is subjected to a load. The extension is 'x'. The 12. wire is melted and then drawn into a wire of square cross-section of side 1 mm. The extension under the same load is
 - (a) $\pi^2 x$
- (b) πx^2
- (c) πx
- Electric potential at any point is $V = 5x + 3y + \sqrt{15}z$, then the magnitude of intensity of 13. electric field is
 - (a) $3\sqrt{2}$ units
- (b) $4\sqrt{2}$ units (c) $5\sqrt{2}$ units
- (d) 7 units
- For a series L-C-R circuit $R = X_L = 2X_C$. The impedence of the circuit and phase 14. difference alternating voltage of the circuit will be
- (a) $\frac{\sqrt{5}}{2}R$, $Tan^{-1}(2)$ (b) $\sqrt{5}R$, $Tan^{-1}(2)$ (c) $\frac{\sqrt{5}}{2}R$, $Tan^{-1}(\frac{1}{2})$ (d) $\sqrt{5}R$, $Tan^{-1}(\frac{1}{2})$
- When a light incident on a medium at an angle of incidence 'i' and refracted into a 15. second medium at angle of refraction 'r', the graph of $\sin i$ and $\sin r$ is shown in the figure, then the critical angle for the two media is

- (a) $\sin^{-1}\left(\sqrt{3}\right)$
- (b) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (c) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (d) $\tan^{-1}\left(\frac{1}{2}\right)$
- 16. Three rods A, B and C of the same length and same cross-sectional area are joined in series. Their thermal conductivities are in the ratio 1:2:1.5. If the open ends of A and C are at 200°C and 18°C respectively, the temperature at the junction of A and B in equilibrium is
 - (a) 156° C
- (b) 74^{0} C
- (c) 116^{0} C
- (d) 148^{0} C

- A simple pendulum has a time period T when it is at north pole. Its time period when it is 17. at equator (R = radius of earth)
 - (a) $T \left[1 + \frac{w^2 R}{2g} \right]$ (b) $T \left[2 + \frac{w^2 R}{2g} \right]$ (c) T2wg
- (d) $2\pi\sqrt{\frac{R}{a}}$
- A wedge of mass 2 m and a cube of mass 'm' are shown in figure. Between cube and 18. wedge there is no friction. The minimum coefficient of friction between wedge and ground so that wedge does not move is

- (a) 0.1
- (c) 0.25
- (d) 0.5
- 19. An object of mass 5 kg falls from rest through a vertical distance of 20 m and attains a velocity of 10 m/s. Then the work done by the resistance of the air on the object is $(g = 10 \text{ ms}^{-2})$
 - (a) 750 J
- (b) 750 J
- (c) 1000 J
- (d) 1000 J
- Three metal spheres P, Q and R of densities d, $\frac{d}{2}$ and 2d are falling down in a liquid of 20. density $\frac{d}{4}$ with terminal velocities. The radii of the spheres are $\frac{r}{2}$, r and 2r respectively.

The ratio of terminal velocities of the spheres P, Q and R is

- (a) 1:4:16
- (b) 3:1:7
- (c) 1:1:1
- (d) 3:4:112
- 21. A source of sound is moving along a circular orbit of radius 3 m with an angular velocity of 10 rad/s. A sound detector located far away from the source is executing linear simple harmonic motion along the line BD with amplitude BC = CD = 6m. The frequency of oscillation of the detector is $\left(\frac{5}{\pi}\right)$ per sec. The source is at the point A when the detector is at the point B. If the source emits a continuous sound wave of frequency 340 Hz. The maximum and minimum frequencies recorded by the detector is

(a) 255 Hz, 442 Hz

[Velocity of sound = 330 m/s]

- (b) 442 Hz, 255 Hz (c) 295 Hz, 482 Hz (d) 482 Hz, 295 Hz

22.				three sources of currents
	(I) $X_0 \sin Wt$	(II) $X_0 \sin wt \cos wt$		$X_0 \cos wt$
	(a) II, I, III	(b) I, II, III	. , , , ,	(d) III, I, II
23.		pagation is suitable for r		=
	(a) Upto 2 MHz		(b) from 2 MHz t	
	(c) from 2 MHz to		(d) above 30 MH	
24.		· •	-	arter circle. The moment of
		<u> </u>		e of the quarter circle and
	(a) 0.6 ml^2	ne plane of the quarter contact (b) ml ²		
25.	` /			ng in a beaker containing a
25.				perature is raised ΔT , the
	-	-	•	ns unchanged. The relation
		is (Ignore the expansion	=	is unchanged. The relation
	•			
	(a) $\alpha = \gamma$	(b) $\alpha = \frac{\gamma}{3}$	(c) $\alpha = \frac{7}{2}$	(d) $\alpha = 2\gamma$
26.	A circular loop of	radius 'r' carrying a cu	rrent 'i' is held at th	e centre of another circular
	loop of radius R(>	> r) carrying a current l	I. The plane of the si	maller loop makes an angle
				ld fixed in this position by
		force at a point on its p	eriphery, the minim	um magnitude of this force
	is	• •	• •	• 7
	(a) $\frac{\mu_0 \pi i Ir}{}$	(b) $\frac{\mu_0 \pi i Ir}{3R}$	(c) $\frac{\mu_0 \pi i Ir}{}$	(d) $\frac{\mu_0 \pi i Ir}{}$
27	123	511	211	11
27.				spectively. The currents in
				tant of time both coils are
	•		currents in the two	cells at that instant of time
	respectively, then	the value $\frac{I_1}{I}$ is		
		ž.		
	(a) $\frac{1}{8}$	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d) 1
• •	O	4	2	
28.		e containing ' m_1 ' gm of		
		at a pressure P ₂ are put i		
	-	ns constant, the commo	-	
	$(2) \frac{P_1 P_2 (m_1 + m_2)}{P_1 P_2 (m_1 + m_2)}$	(b) $\frac{m_1 m_2 (P_1 + P_2)}{m_1 m_2 (P_1 + P_2)}$	$(c) = P_1 P_2 m_1$	$(d) = \frac{m_1 m_2 P_1}{m_1 m_2 P_1}$
	$P_2m_1+P_1m_2$	(b) $\frac{m_1 m_2 (P_1 + P_2)}{P_2 m_1 + P_1 m_2}$	$\frac{(C)}{P_2m_1+P_1m_2}$	$\frac{(u)}{P_{2}m_{1}+P_{1}m_{2}}$
29.	A vector \vec{a} makes	30^0 and \vec{b} makes 120^0	$^{\circ}$ angle with the x-ax	xis. The magnitude of these
29.		30^{0} and \vec{b} makes 120^{0} and 4 unit respectively.	_	xis. The magnitude of these sultant vector is
29.			_	<u> </u>
29.	vectors are 3 unit a	and 4 unit respectively.	The magnitude of re	sultant vector is

22.

30.		s in List – I to the outp List – II	ut for the given input A	A and B in List – II
	(A) AND gate	(I) $\overline{A+B}$		
	(B) OR gate			
	(C) NAND gate			
	(D) NOR gate			
	(a) A-III, B-I, C-IV,	D-II	(b) A-I, B-III, C-II, I	O-IV
	(c) A-II, B-I, C-IV, I		(d) A-IV, B-III, C-II	
31.			of an isosceles triangle	
	AC = BC = 5 cm and vertex C is	AB = 8 cm. The dist	ance of centre of mass	of the system from the
	(a) 2 cm	(b) 1 cm	(c) 1.5 cm	(d) 3 cm
32.	An – inelastic ball is	dropped from a height	t of 100 m. Due to the	earth, 20% of its energy
	is lost. To what heigh	nt will the ball rise?		
	(a) 80 m	(b) 40 m	(c) 60 m	(d) 20 m
33.	A thermocouple of re	esistance 'r' has cold ju	unction at t. It is in ser	ies with a galvanometer
			omf of E volt/°C. The h	not junction temperature
	when the galvanomet			
	(a) $t + \frac{VG}{E(G+r)}$	(b) $t + \frac{EG}{V(G+r)}$	(c) $t + \frac{E(G+r)}{VG}$	(d) $t + \frac{V(G+r)}{EG}$
34.	()	()		and 2 mm thick. Two
51.				at produced in the wires
		(b) 1 · 1	(c) $1 \cdot 16$	$(d) \ 1 \cdot 4$
35	(a) 16:1	(b) 1 : 1	(c) 1 : 16	(d) 1:4
35.	(a) 16:1 The lower end of a glass cm. The tube is the	lass capillary tube is di	ipped in water. Water i	` /
35.	(a) 16:1 The lower end of a gl	lass capillary tube is di	ipped in water. Water i	rises to a height of
35.	(a) 16:1 The lower end of a gl 8 cm. The tube is the of contact will be	lass capillary tube is di n broken at a height o	ipped in water. Water i	rises to a height of water column and angle
35.36.	(a) 16:1 The lower end of a gl 8 cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of th	lass capillary tube is dien broken at a height of (b) $6m$, $\cos^{-1}\left(\frac{3}{4}\right)$ be interference produce light fringe by introduced	ipped in water. Water if 6 cm. The height of vector (c) $4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ and by light of wavelength	rises to a height of water column and angle
	(a) 16:1 The lower end of a glass cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the the position of 5^{th} br	lass capillary tube is dien broken at a height of the control of	ipped in water. Water if 6 cm. The height of vector (c) $4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ and by light of wavelenging a thin glass plate	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to of refractive index 1.5.
	(a) 16:1 The lower end of a glass cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the position of 5^{th} br. The thickness of the position of 6×10^{-4} mm	lass capillary tube is dien broken at a height of the following the first constant of the following that the following the first constant of the following that the following the first constant of the following that the following the following the following that the following the following the following that the following the fo	ipped in water. Water if 6 cm. The height of $\sqrt{(c)} 4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ ed by light of wavelenging a thin glass plate $\sqrt{(c)} 6 \times 10^{-4} cm$	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to
36.	(a) 16:1 The lower end of a gl 8 cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the position of 5^{th} br. The thickness of the gl. (a) 6×10^{-4} mm. A short magnet produced position of magneton	lass capillary tube is distributed in broken at a height of the broke	ipped in water. Water if 6 cm. The height of $\sqrt{(c)} 4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ ed by light of wavelenging a thin glass plate (c) $6 \times 10^{-4} cm$ 0^0 when placed at a capact of double the length $\sqrt{(c)} \sqrt{(c)} \sqrt{(c)}$	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to of refractive index 1.5. (d) $6\times10^{-2}m$ ertain distance in tan A gth and thrice the pole
36.	(a) 16:1 The lower end of a glassem. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the position of 5^{th} br. The thickness of the glassem (a) 6×10^{-4} mm. A short magnet production of magnetors strength is placed at the second strength of the position of magnetors.	lass capillary tube is dien broken at a height of the broken at a hei	ipped in water. Water if 6 cm. The height of $\sqrt{(c)} 4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ ed by light of wavelenging a thin glass plate $\sqrt{(c)} 6 \times 10^{-4} cm$ $\sqrt{(c)} 6 \times 10^{-4} cm$ of when placed at a content of double the length B position the deflection.	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to of refractive index 1.5. (d) $6 \times 10^{-2}m$ ertain distance in tan A gth and thrice the pole tion produced is
36. 37.	(a) $16:1$ The lower end of a glass cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the position of 5^{th} brown The thickness of the graph (a) 6×10^{-4} mm A short magnet production of magneton strength is placed at the (a) 30^0	lass capillary tube is displayed as a height of the broken at a heigh	ipped in water. Water if 6 cm. The height of variety of $(c) 4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ and by light of wavelenging a thin glass plate $(c) 6\times10^{-4}$ cm 0^0 when placed at a capact of double the length B position the deflect $(c) 45^0$	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to of refractive index 1.5. (d) $6\times10^{-2}m$ ertain distance in tan A gth and thrice the pole tion produced is (d) 120^0
36.	(a) $16:1$ The lower end of a gl 8 cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the position of 5^{th} br. The thickness of the gl. (a) 6×10^{-4} mm. A short magnet production of magnetors strength is placed at the (a) 30^{0} . A variable capacitor	lass capillary tube is dien broken at a height of the broken at a hei	ipped in water. Water if 6 cm. The height of variety of $(c) 4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ and by light of wavelenging a thin glass plate $(c) 6\times10^{-4}$ cm 0^0 when placed at a capact of double the length B position the deflect $(c) 45^0$	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to of refractive index 1.5. (d) $6\times10^{-2}m$ ertain distance in tan A gth and thrice the pole tion produced is (d) 120^0 the capacitance of the
36. 37.	(a) $16:1$ The lower end of a gl 8 cm. The tube is the of contact will be (a) $6m$, $\sin^{-1}\left(\frac{3}{4}\right)$ A central fringe of the position of 5^{th} br. The thickness of the gl. (a) 6×10^{-4} mm. A short magnet production of magnetors strength is placed at the (a) 30^{0} . A variable capacitor	lass capillary tube is dien broken at a height of the broken at a hei	ipped in water. Water if 6 cm. The height of $(c) 4m$, $\sin^{-1}\left(\frac{1}{2}\right)$ ed by light of wavelenging a thin glass plate $(c) 6\times10^{-4}cm$ $(c) 6\times10^{-4}cm$ $(c) 6\times10^{-4}cm$ gnet of double the length B position the deflection $(c) 45^0$ to a 10V battery. If	rises to a height of water column and angle (d) $4m$, $\cos^{-1}\left(\frac{3}{4}\right)$ gth 6000A^0 is shifted to of refractive index 1.5. (d) $6\times10^{-2}m$ ertain distance in tan A gth and thrice the pole tion produced is (d) 120^0 the capacitance of the

- 39. Assertion (A): With the increase of target voltage, the energy of x-rays can be increased. Reason (R): The short wavelength limit of continuous X-ray spectrum varies inversely as the target voltage.
 - (a) Both A and R are true and R is the correct explanation of A
 - (b) Both A and R are true and R is not the correct explanation of A
 - (c) A is true, R is false

(d) A is false, R is true

- The fundamental frequency of a sonometer wire of length ' ℓ ' is f_0 . A bridge is now 40. introduced at a distance of $\Delta \ell$ from the centre of the wire $(\Delta \ell << \ell)$. The number of beats heard if both sides of the bridge are set into vibration in their fundamental modes are

- (a) $\frac{8f_0\Delta\ell}{\ell}$ (b) $\frac{f_0\Delta\ell}{\ell}$ (c) $\frac{2f_0\Delta\ell}{\ell}$ (d) $\frac{4f_0\Delta\ell}{\ell}$

* * *

41.	In a nucleide one a equivalent of this mas	-	pated into energy to	bind its nulcueons is
	(a) 931.5 eV		(c) $931.5 \times 10^6 \text{ eV}$	(d) 931.5 Mv
42.	Which of the following	ng is Isotope of Ge_{32}^{76} ?		
		(b) Ge^{77}_{32}	(c) Se_{34}^{77}	(d) Br_{35}^{80}
43.	How many electrons number – 24?	are present in the M	-shell of an atom of a	n element with atomic
	(a) 5	(b) 6	(c) 12	(d) 13
44.			of electron potassium a	
	(a) 4, 0, 1, $\frac{1}{2}$	(b) 4, 1, 0, $\frac{1}{2}$	(c) 4, 0, 0, $\frac{1}{2}$	(d) 4, 1, 1, $\frac{1}{2}$
45.	What is the wave leng	gth of H_{β} line the Bal	mer series of hydrogen	spectrum?
	(R = Ryd bergs's con	stant)		
		´	$\sim 3R$	16
	(a) $\frac{36}{5R}$	(b) $\frac{5R}{36}$	(c) $\frac{3R}{16}$	(d) $\frac{16}{3R}$
46.	Which of the following	ng is the correct order	of ionic radii?	
	(a) $Na^+ < Mg^{+2} < A\ell^-$	$^{+3} < Si^{+4}$	(b) $A\ell^{+3} < Si^{+4} < Na^{+}$	$< Mg^{+2}$
	(c) $Si^{+4} < A\ell^{+3} > Mg^{+}$	$^{+2} > Na^{+}$	(d) $Na^+ > Mg^{+2} > A\ell$	$^{+3} > Si^{+4}$
47.	Which of the following		` / 0	
		_	(c) CO ₂ , Tetra hedral	(d) BF ₃ , octa hedral
48.	The correct order of V	Vanderwaals radius of	F, Cl, and Br is	
			(c) $F > C\ell > Br$	(d) $Br > F > C\ell$
49.		4 moles of nitrogen at		
	(a) 4400	(b) 3200	(c) 4800	(d) 1524
50.		on numbers of 'N' in N		(1) 2 2
<i>5</i> 1	(a) $+3, -5$	(b) - 3, +5	(c) +3, +6	
51.	residue?			weight (in gms) of the
	(a) 2.8	(b) 28	(c) 4.4	(d) 44
52.		nosphate is known as		(1) NT: 1:
52	(a) cal gon	(b) permutit	(c) Natalite	(d) Nitrolim
53.	(a) 0^{0} C	(b) 11.6 ⁰ C	ater will be maximum?	$(d) 27^{0}C$
54.	Composition of carna		(C) 4 C	(u) 21 C
J-1.		$KC\ell, MgC\ell_2 6H_2O$	(c) KNO_3 , $MgNO_3$	O ₃ (d) None
55.	$BC\ell_3 + H_2O \longrightarrow p$., 3, 0	. ,
= -	(a) $H_3BO_3 + HC\ell$		(c) $B_2H_6 + HC\ell$	(d) No Reaction
	(-,3-03 1100	(=) =203 . 1100	(-) =26 11100	(=, 1.0 11000000

				SLI - I			
56.	_	lead in lead pencil is	() 20	(1) 0			
<i>57</i>	(a) $31 - 66$	(b) 80	(c) 20	(d) 0			
57.		following has pyramidal	_	(d) V _o E			
50	(a) XeF ₄	(b) XeO ₃	(c) XeF_2	(d) XeF ₆			
58.		following is an organic c (b) CO ₂	(c) HCOOH	(d) H_2CO_3			
50	(a) CO $H_{2}O$			(d) 112CO3			
59.	$CaC_2 \xrightarrow{2} \longrightarrow$	$A \xrightarrow{Hot} B \xrightarrow{A\ell C\ell_3} C$.	C 1S				
	(a) Toluene	(b) Benzene	(c) Acetylene	(d) Chloro Benzene			
60.	-	eaction with metallic sod	<u> </u>				
	(a) Friedal – C	Craft's reaction	(b) Sand mayer				
	(c) Wurtz reac		(d) Gabriel's re				
61.	Which one of	the following is mainly a	esponsible for depleti	on of ozone layer?			
	(a) methane	* /	(c) water (d) cl	nloro fluoro carbons			
62.	Which one of	the following is diamagr	netic ion?	2.			
	(a) Co ⁺²	(b) Cu ⁺²	(c) Mn ⁺²	(d) Sc^{3+}			
63.		rgies (in KJ mole ⁻¹) of P-		= -			
				d 247 (d) 318, 247 and 389			
64.	-	lucts formed when ammo					
	(a) N_2 and NC	. , .		Cl (d) N ₂ and HCl			
65.	Iron sulphide	is heated in air to form	A, an oxide of sulphu	r. A is dissolved in water to			
	give an acid.	The basicity of the acid is	\mathbf{S}				
	(a) 2	(b) 3	(c) 1	(d) zero			
66.	Which one of	the following is a lyophi	llic colloidal solution?	?			
	(a) smoke	(b) Gold solution	n (c) starch Aque	ous solution (d) cloud			
67.	Which of the	following is not correct?					
	(a) chlorophyll is responsible for the synthesis of carbohydrates in plants						
	(b) the compound formed with the addition of oxygen to haemoglobin is called						
	oxyhaemoglobin						
	(c) Acetyl salicylic acid is known as asprin						
		ion present in vitamin B					
68.				electrolysed for few seconds			
	using Pt electr	odes. Which of the follo					
	· · ·	solution decreases		olution increases			
		ated at cathode		olution remains same			
69.	The heat of f	ormations CO(g) and Co	$O_2(g)$ are $\Delta H = -110$	and $\Delta H = -393$ KJ mole			
	respectively. V	What is the heat of reaction	on (ΔH) (in Kj/mole)) for the following reaction			
	$CO + \frac{1}{2}O_2 - \frac{1}{2}O_3$	$\rightarrow CO_2$					
	(g) \angle (g)	(g)					
	(a) - 507	(b) - 142.5	(c) -283	(d) 504			

70.	What is the quantity of ele 250 ml of 1Mole AgNO ₃ so	· ·	ombs) required to dep	posit all the silver from
	(a) 2412.5 (b) 24		(c) 4825.0	(d) 48250
71.	` '	ure increases vol	lume of solution increa	=
	(a) Both A and R are true, R	-		
	(b) Both A and R are true, F	R is not correct e	•	
72	(c) A is true, R is false	aslution of CII	(d) A is false, R is tr	
72.	Assertion (A): The aqueous Reason (R): Acerate Iron			n nature
	(a) Both A and R are true, R		• •	
	(b) Both A and R are true, F	-		
	(c) A is true, R is false		(d) A is false, R is tru	ue
73.	The rate constant of a first			
	required for reducing an inti	ial concentration		
	(a) 4 (b) 1		(c) 2	(d) 3
74.	For the following reaction	* *	$\longrightarrow NH_{3(g)} + H_2S_{(g)}$	the total pressure at
	equilibrium is 30 atm. The	value of K_p is	() 20	2
	` '		(c) 30 atm^2	(d) 45 atm ²
75.	In the reaction C_2H_5OH	$\xrightarrow{Cu} X$ the mo	olecular formula of X	is:
	() . 0	$_{4}\text{H}_{10}\text{O}$	(c) C_2H_4O	(d) C_2H_6
76.	In which of the following re	_		
	(a) $C_6H_6 + CH_3COC\ell$ / And	hydrous $A\ell C\ell_3$		
	(c) $C_2H_5C\ell + C_2H_5ONa$			$C\ell$ /Anhydrous $A\ell C\ell_3$
77.	Which of the following pair	is functional is		
	(a) CH_3COCH_3 , CH_3CHO		(b) $C_2H_5CO_2H$, CH_3	, - ,
	(c) $C_2H_5CO_2H$, $CH_3CO_2C_2H$	5	(d) CH_3CHO, CH_3C	2
78.	The product formed in the a		•	
	(a) $CH_3CH_2CH(OH)CHO$	•	(b) $CH_3 - CH(OH)$	CH_2CHO
	(c) $CH_3CH(OH)COCH_3$		(d) $CH_3CH_2CH_2CH$	O
79.	In the following reactions x	and y are respec	ctively	
	$CH_3COOH + NH_3 \longrightarrow x$	$\xrightarrow{\Delta} y + H_2O$	-	
	(a) CH_3CONH_2 , CH_4		(b) CH_3COONH_4 , C	H_3CONH_2
	(c) CH_3CONH_2 , CH_3COOH_2	I	(d) CH_3NH_2 , CH_3CO	· -
80.	Which of the following is the		5 2 5	=
•	_	C_3H_9N	(c) C_2H_5N	(d) CH_3N

* * *

MATHEMATICS

- If Q denotes the set of all rational numbers and $f\left(\frac{p}{q}\right) = \sqrt{p^2 q^2}$ for any $\frac{p}{q} \in Q$, then 81. observe the following statements
 - (A) $f\left(\frac{p}{a}\right)$ is real for each $\frac{p}{a} \in Q$ (B) $f\left(\frac{p}{a}\right)$ is complex number for each $\frac{p}{a} \in Q$
 - (a) Both A and B are false

(b) A is false, B is true

(c) A is true, B is false

- (d) Both A and B are true
- If $a^x = b^y = c^z = d^w$ then the value of $x \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right)$ is 82.
 - (a) $\log_a bcd$
- (b) $\log_a abc$
- (c) $\log_b cda$
- (d) $\log_{c} dab$
- The number of natural numbers less than 1000, in which no two digits are repeated is 83.
 - (a) 792
- (b) 837
- (c) 738
- (d) 720
- The difference between two roots of the equation $x^3 13x^2 + 15x + 189 = 0$ is 2, then the 84. roots of the equation are
 - (a) 3, -7, -9
- (b) 3, -5, 7
- (c) -4, -7, 9
- (d) -3, 7.9
- The equation of the locus of z such that $\left| \frac{z-i}{z+i} \right| = 2$, where z = x+iy is a complex 85.
 - number of (a) $3x^2 - 3y^2 - 10y + 3 = 0$

(b) $3x^2 + 3y^2 - 10y + 9 = 0$

(c) $3x^2 - 3y^2 + 10y - 3 = 0$

- (d) $3x^2 + 3y^2 + 10y + 3 = 0$
- In a triangle ABC, $\frac{s-a}{\Delta} = \frac{1}{8}$, $\frac{s-b}{\Delta} = \frac{1}{12}$, $\frac{s-c}{\Delta} = \frac{1}{24}$, then b = 86.

- (d) 30

- The function $f(x) = x \int_{-\infty}^{x} \log_{e} \left(\frac{1-x}{1+x} \right) dx$ 87.
 - (a) an even function

(b) a periodic function

(c) an odd function

- (d) neither even nor odd
- If $\overline{i} \overline{j} + \overline{k}$, $2\overline{i} + \overline{j} 2\overline{k}$, $3\overline{i} + \overline{j} + 2\overline{k}$ are positive vectors of 3 points in space, then the 88. vector area of the triangle formed by them is
 - (a) $4\overline{i} + \frac{7}{2}\overline{j} + \overline{k}$
- (b) $4\overline{i} \frac{7}{2}\overline{j} + \overline{k}$ (c) $3\overline{i} + \frac{2}{7}\overline{k}$
- (d) $4\overline{i} \frac{7}{2}\overline{j} \overline{k}$
- If $x = \tan 15^\circ$, $y = \cos ec75^\circ$ and $z = 4\sin 18^\circ$ then 89.
 - (a) z > y > x
- (b) x > y > z
- (c) y > z > x
- (d) z > x > y

90.
$$Lt \frac{\cos x}{x \to \frac{\pi}{2}} \frac{-\pi}{x - \frac{\pi}{2}}$$

(a) -1

(b) 1

(c) $\frac{\pi}{2}$

(d) $-\frac{\pi}{2}$

The maximum value of $x^4 + x^2 + 1$ is 91.

(a) $\frac{4}{2}$

(b) not existing

(c) 0

(d) 1

One of the two events A and B occur. If mP(A) = nP(B) then the odds in favour of B 92.

(a) (m+n):n

(b) n:m

(d) m:(n+m)

If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u =$ 93.

(a) $\frac{-8}{(x+y+z)^2}$ (b) $\frac{9}{(x+y+z)^2}$ (c) $\frac{8}{(x+y+z)^2}$ (d) $\frac{-9}{(x+y+z)^2}$

If $\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + b \log \sin(x-\alpha) + c$, then (A, B) = 94.

(a) $\left(-\cos\alpha, \sin\alpha\right)$ (b) $\left(-\sin\alpha, \cos\alpha\right)$ (c) $\left(\cos\alpha, \sin\alpha\right)$

(d) None

95. The image of the point (3, 4) with respect to the line 3x+4y+5=0 is

(a) $\left(\frac{21}{5}, \frac{28}{5}\right)$

(b) $\left(\frac{-21}{5}, \frac{-28}{5}\right)$ (c) $\left(\frac{22}{5}, \frac{23}{5}\right)$

(d) $\left(\frac{21}{5}, \frac{-28}{5}\right)$

96. The differential equation obtained by eliminating the arbitrary constants a and b from $xy = ae^x + be^{-x}$ is

(a) $x \frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} - xy = 0$

(b) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3xy = 0$

(c) $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} - xy = 0$

(d) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 3xy = 0$

The solution of $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ is 97.

(a) $e^{\frac{y}{x}} = kx$ (b) $e^{\frac{y}{x}} = ky$ (c) $e^{-\frac{y}{x}} = kx$ (d) $e^{-\frac{y}{x}} = ky$

(b) $\sqrt{2} - \sqrt{3}$ (c) $2 + \sqrt{2}$

99. If
$$\frac{3x+2}{(x+1)(2x^2+3)} = \frac{A}{x+1} + \frac{Bx+C}{2x^2+3}$$
, then $A + C - B =$

(a) 0 (b) 1 (c) 2 (d) 3

100. $\cos ec15^\circ + \sec15^\circ =$
(a) $2\sqrt{2}$ (b) $2\sqrt{6}$ (c) $3\sqrt{6}$ (d) $4\sqrt{6}$

101. Seven balls are drawn simultaneously from a bag containing 5 white and 6 green balls. The probability of drawing 3 white and 4 green balls is

(a) $\frac{7+6}{11c_7}$ (b) $\frac{5c_3+6c_4}{11c_7}$ (c) $\frac{5c_2+6c_2}{11c_7}$ (d) None

102. If $f(x) = \begin{cases} 1-\sqrt{2}\sin x & \text{if } x \neq \frac{\pi}{4} \\ x-4x & \text{if } x = \frac{\pi}{4} \end{cases}$ is continuous at $\frac{\pi}{4}$, then $a = \frac{\pi}{4}$ (d) None

103. If $\frac{Lt}{x+0}\left(\frac{\cos 4x+a\cos 2x+b}{x^4}\right)$ is finite, then the values of a, b are respectively

(a) 5, -4 (b) 4, 5 (c) -5, -4 (d) -4, 3

104. Dividing the interval, [0, 6] into 6 equal parts and by using trapezoidal rule the value of $\int_0^6 x^3 dx$ approximately

(a) 333 (b) 331 (c) 332 (d) 334

105. $\int_0^{\frac{\pi}{2}} \frac{dx}{1+\tan^3 x} = \frac{\pi}{4}$

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{3\pi}{2}$

106. Which of the function from x to x (set of integers) is a bijection?

- (a) f(x) = x+2 (b) f(x) = 3x+1 (c) $f(x) = x^3$ (d) none The coefficient of x^5 in the expansion of $(1+x)^{21} + (1+x)^{22} + (1+x)^{23} + \dots + (1+x)^{30}$ is
 - (a) 51_{c_z}
- (b) $31_{c_6} 21_{c_6}$ (c) $31_{c_5} 21_{c_5}$ (d) None

108. If
$$a = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$$
, then $\begin{vmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{vmatrix}$ is

(a) purely real (b) purely imaginary

(c) complex number

(d) 0

109. The period of
$$\cos x \cdot \sin \left(\frac{\pi}{4} - x \right)$$
 is

(a)
$$\frac{\pi}{2}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\pi$$

(d) $\frac{\pi}{4}$

110. If
$$\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin(2x - k) + c$$
, then k =

(a)
$$\frac{-5\pi}{3}$$
 (b) $\frac{5\pi}{4}$ (c) $\frac{5\pi}{3}$

(b)
$$\frac{5\pi}{4}$$

(c)
$$\frac{5\pi}{3}$$

(d)
$$\frac{-5\pi}{4}$$

111. If
$$f(x+y)=f(x)f(y) \forall x, y \text{ and } f(x)\neq 0$$
, then $f'(x)=$

(a)
$$f^1(x)$$

(b)
$$f^{1}(y)$$

(c)
$$f(x)f(y)$$

(c)
$$f(x)f(y)$$
 (d) $f(x)f^{1}(0)$

$$112. \qquad \int \frac{2x+3}{x^2+x+1} dx$$

(a)
$$\log |x^2 + x + 1| + \frac{2}{\sqrt{3}} \log \left(\frac{2x + 1}{\sqrt{3}} \right) + c$$

(a)
$$\log |x^2 + x + 1| + \frac{2}{\sqrt{3}} \log \left(\frac{2x+1}{\sqrt{3}} \right) + c$$
 (b) $\log |x^2 + x + 1| + \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$

(c)
$$\log |x^2 + x + 1| + \frac{5}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$$
 (d) $\log |x^2 + x + 1| + \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$

(d)
$$\log |x^2 + x + 1| + \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + \frac{1}{\sqrt{3}} \sin^{-1} \left(\frac$$

113. The sum of the series
$$1 + \frac{1}{4 \cdot 2!} + \frac{1}{16 \cdot 4!} + \frac{1}{64 \cdot 6!} + \dots$$
 is

(a)
$$\frac{e+1}{2\sqrt{e}}$$

(b)
$$\frac{e-1}{\sqrt{e}}$$

(b)
$$\frac{e-1}{\sqrt{e}}$$
 (c) $\frac{e+1}{\sqrt{e}}$ (d) $\frac{e-1}{2\sqrt{e}}$

(d)
$$\frac{e-1}{2\sqrt{e}}$$

114. If
$$(3, -2)$$
 is the mid point of the chord AB of circle $x^2 + y^2 - 4x + 6y - 5 = 0$ then AB =

(a) 16

The area bounded by the circle $x^2 + y^2 = a^2$ and the line x + y = a in the first quadrant is 115.

(a)
$$(\pi - 2)a^2$$

(b)
$$\frac{\pi a^2}{2}$$

(b)
$$\frac{\pi a^2}{2}$$
 (c) $\frac{1}{4}(\pi - 2)a^2$ (d) $(\frac{\pi - 4}{2})a^2$

(d)
$$\left(\frac{\pi-4}{2}\right)a^2$$

Two sides a triangle lie along $2x^2 - 5xy + 2y^2 = 0$ and the point (2, 3) is the centroid. 116. The equation of the third side is

(a) 7x - 2y - 12 = 0

(b) 7x + 2y - 12 = 0 (c) 7x + 2y + 12 = 0

	given by			
	(a) $\frac{12}{5}$	(b) $\frac{24}{5}$	(c) $\frac{16}{5}$	(d) $\frac{48}{5}$
118.	The line $r\cos(\theta - \theta)$	$-\alpha$) = p , $r\sin(\theta - \alpha) = q$	q are	
119.	The equation	th other angle 60^0 to each other of the pair of str 10x + 5y = 0 and passing	aight lines perpend	each other
	(a) $2x^2 + 5xy + 2y$	$y^2 = 0$	(b) $2x^2 - 3xy + y^2 =$	0
	(c) $2x^2 + 3xy + y^2$	=0	(d) $2x^2 - 5xy + 2y^2 =$	= 0
120.	The product of the	e distinct $(2n)^{th}$ roots of 1	$+i\sqrt{3}$ is equal to	
	(a) $\frac{1+i\sqrt{3}}{4}$	(b) $\frac{-1+i\sqrt{3}}{2}$	(c) $-1-i\sqrt{3}$	(d) $1+i\sqrt{3}$
121.	The angles of a tr	riangle are in the ratio 3	: 5 : 10. Then the ratio	o of the smallest side to
	the greatest side is		() 1 · 000	(1) 1 200
122.	plane through its elevation is found	(b) $1:2\cos 10^{\circ}$ an object on a hill is obbase, to be 30° . After we to be 60° . Then the height	oserved from a certain valking 120 m towards the object (in metal)	s it on level ground the ers) is
100	(a) 120	(b) 140	(c) $140\sqrt{3}$	(d) $60\sqrt{3}$
123.	$\begin{vmatrix} \log e & \log e^2 & \log e \\ \log e^2 & \log e^3 & \log e \end{vmatrix}$	$\begin{vmatrix} \log e^3 \\ \log e^4 \end{vmatrix} = \\ \log e^5 \end{vmatrix}$		
	(a) 0	(b) $2\log e$	(c) $3\log e$	(d) $4\log e$
124.	The length of the point $(1, 3)$ is	ne tangent around to the		
	(a) 3	(b) -3	· /	· /
125.	Vector equation of $2\overline{i} + 3\overline{j} + 4\overline{k}$, \overline{i}	of the plane passing through $-2\overline{j} + 3\overline{k}$	igh the point $i + j + k$	parallel to the vectors
	(a) $\overline{r} = (\overline{i} + \overline{j} + \overline{k})$	$+s(2\overline{i}+3\overline{j}+4\overline{k})+t(\overline{i})$	$-2\overline{j}+3\overline{k}$	
	(b) $\overline{r} = (1-s)(\overline{i} +$	$-\overline{j} + \overline{k}$) + $s(2\overline{i} + 3\overline{j} + 4\overline{k})$	$+t(\overline{i}-2\overline{j}+3\overline{k})$	
	(c) $\overline{r} = (1-s-t)($	$\overline{i} + \overline{j} + \overline{k} + \overline{k} + s(2\overline{i} + 3\overline{j} + c)$	$4\overline{k}$)+ $t(\overline{i}-2\overline{j}+3\overline{k})$	(d) none

The latus rectum of a parabola whose focal chord is PSQ such that SP = 3 and SQ = 2 is

117.

				SET - 1
126.	If $\bar{a}, \bar{b}, \bar{c}$ are 3	vectors such that	$\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{b} \cdot (\overline{c} + \overline{a})$	$(\overline{c}) = \overline{c} \cdot (\overline{a} + \overline{b}) = 0$ and
	$ \overline{a} = 1, \overline{b} = 4, \overline{c} = 8$	then $\left \overline{a} + \overline{b} + \overline{c} \right =$		
	(a) 9	(b) 18	(c) 13	(d) 26
127.	$\sin\frac{\pi}{5} \cdot \sin\frac{2\pi}{5} \cdot \sin\frac{3\pi}{5}$	$-\sin\frac{4\pi}{5} =$		
	(a) $\frac{2}{16}$	(b) $\frac{1}{16}$	(c) $\frac{3}{16}$	(d) $\frac{5}{16}$
128.		ions of $\tan x + \sec x = 2$	$2\cos x$ in $[0,2\pi]$	
	(a) 1	(b) 2	(c) 4	(d) 3
129.	(a) 1 $\underset{x \to \infty}{Lt} \sqrt{x + \sqrt{x + \sqrt{x}} - \sqrt{x}}$	\sqrt{x}		
	(a) 0	(b) log 2	(c) $\frac{1}{2}$	(d) log 4
130.	The relative error in	the area of the circle is	k times the relative er	ror in the radius then k
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) 2	(d) 3
131.	Area bounded betwe	en the curves $x^2 = 4y$,	$y^2 = 4x$ is	
	(a) $\frac{16}{3}$ sq. units	(b) $\frac{64}{3}$ sq. units	(c) $\frac{1}{3}$ sq. units	(d) $\frac{4}{3}$ sq. units
132.		the circles $x^2 + y^2 = 1$	$x^2 + y^2 - 2x = 1$ and $x^2 + y^2 - 2x = 1$	
	(a) $(1, 1)$		(c)(0,0)	(d) (3, 3)
133.	$\int_{-\pi}^{\frac{\pi}{2}} \sin\left(\log\left(x + \sqrt{x^2 + 1}\right)\right) dx$	(-1)dx =		
	2		(-) -	(1) 1
	(a) 0	(b) π	(c) $-\pi$	(d) 1
134.	If $f: R \to R$ is defin	$f(x) = \frac{1}{2\cos 3x}$	for each $x \in R$, then t	he range of f is
	(a) $\left(\frac{1}{3},1\right)$	(b) $\left[\frac{1}{3},1\right]$	(c) $\left[\frac{1}{3},1\right]$	(d) $\left(\frac{1}{3},1\right]$
135	The coefficient of x^k	$\frac{1}{1}$ in the expansion of $\frac{1}{1}$	$\frac{-2x-x^2}{x}$ is	

- The coefficient of x^k in the expansion of $\frac{1-2x-x}{e^{-x}}$ is

 (a) $\frac{1-k-k^2}{k!}$ (b) $\frac{k+k^2-1}{k!}$ (c) $\frac{1+k-k^2}{k!}$

- (d) none

136.	The domain of the fun	nction $f(x) = \sqrt[3]{\frac{2x}{x^2 - 10}}$	$\frac{x-1}{0x-11}$	
	(a) $\left(-\infty, -1\right) \cup \left(-1, 11\right)$	$)\cup (11,\infty)$	(b) (-1,11)	
	(c) $\left(-\infty, -1\right) \cup \left(11, \infty\right)$		(d) $\left(-\infty,\infty\right)$	
137.		_	ty of face k is proportion probability of getting	
	/	(b) $\frac{3}{7}$	(c) $\frac{4}{7}$	(d) $\frac{5}{7}$
138.	$\text{If } f(x) = \begin{cases} 8^x - \epsilon \\ e^x \sin x + \epsilon \end{cases}$	$4^{x}-2^{x}+1$, for x $p\sin x + a\log 4$, for x	x > 0 is continuous at x	= 0 then $a =$
	(a) 2	(b) $\log_e 3$	(c) $\log_e 5$	(d) $\log_e 2$
139.	$\sum \overline{i} \times (\overline{a} \times \overline{i}) =$			
	(a) $3\overline{a}$	(b) $2\overline{a}$	(c) $4\overline{a}$	(d) $5\overline{a}$
140.	If $x = 2 + 2^{1/3} + 2^{2/3}$ th (a) 1		(c) 4	(d) 5
141.	If $\sin x + \sin y = 3(\cos x)$	s $y - \cos x$) then $\frac{\sin 3x}{\sin 3y}$	$\frac{c}{v} =$	
142.	from the point $(1, 3)$ is	S		(d) 1 at a distance of 5 units
1.42	(a) 2	(b) 0	(c) 3 $3)^2 + (n + 4)^2 - 16$ mass	(d) 5 ts the circle at Q and R
143.	then the circum centre (a) (1, -3)	e of the triangle PQR i	s (c) (-1, 3)	(d) (-1, -3)
144.	The foci of the ellipse	$e^{\frac{x^2}{16} + \frac{y^2}{b^2}} = 1$ and the I	Hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{144}$	$\frac{1}{25}$ coincide then $b^2 =$
	(a) 5	(b) 9	(c) 11	(d) 7
145.	The probability of a b	oomb hitting a bridge is	s $\frac{1}{2}$ and one hit is suff	icient to destroy it. The
	greater than 0.8 is	_	-	dge being destroyed is
146.	(a) 2 A coin is tossed 'n' te then the least value or	•	(c) 4 of getting head at least	(d) 5 once is greater than 0.8
	(a) 3	(b) 4	(c) 5	(d) 6

				SET - 1
147.	The period of $\frac{\cot(5x)}{\sec(3x)}$	$\frac{(x+3)+\sin(3x+4)}{(-4x)-\cos(4-6x)}$ is		
	(a) 4π	(b) 3π	(c) 2π	(d) $-\pi$
148.		$f \cos^{-1} \left[\frac{1}{\sqrt{2}} \left(\cos \frac{9\pi}{10} - \right) \right]$	$ \sin\frac{9\pi}{10} $] is	
	(a) $\frac{3\pi}{20}$	(b) $\frac{17\pi}{20}$	(c) $\frac{7\pi}{20}$	(d) $\frac{9\pi}{20}$
149.	•	the circle passing		and concentric with
			2fy + c = 0 then $12g -$	
	(a) 0	(b) 2	(c) 3	(d) 1
150.	$\underset{n\to\infty}{Lt} \frac{[x]+[2n]+}{n^2}$	$\frac{+[nx]}{}$ is		
	(a) n	(b) 2n	(c) $\frac{n}{2}$	(d) $\frac{n}{3}$
151.	If errors of 2% each a in its volume is	are made in the base ra	2	e, then percentage error
	(a) 4	(b) 5	(c) 6	(d) 8
152.	The value of $(127)^{\frac{1}{3}}$	to 4 decimal places is		
	(a) 5.4267	(b) 5.0267	(c) 5.5267	(d) 5.0001
153.	$y = \tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1+x}}{\sqrt{1+x} + \sqrt{1+x}} \right)$	$\left(\frac{1-x}{1-x}\right)$ then $\frac{dy}{dx}$ is		
	VI X	(b) $\frac{1}{4\sqrt{1-x^2}}$	2 VI X	(d) none
154.	If $\cot \frac{A}{2} : \cot \frac{B}{2} : \cot \frac{C}{C}$	$\frac{C}{5} = 3:5:7$ then a:b:	c	
	(a) 6:5:4	(b) 6:7:8	(c) 6:4:3	(d) none
155.	If the rate of decrease	e of $\frac{x}{2} - 2x + 5$ is twice	ce the decrease of x the	en x
	(a) 1	(b) 2	(c) 3	(d) 4
156.	If $\log_{10} \left(98 + \sqrt{x^2 - 12} \right)$	(2x+36) = 2 then x =		
	(a) 6	(b) 7	(c) 8	(d) 9
157.	Volume of the tetrahe	edron with edges $\overline{i} + 2$	$2\overline{j} + 2\overline{k}, 2\overline{i} - \overline{j} + 2\overline{k}, 2\overline{i}$	$\overline{} + 2\overline{j} - \overline{k}$
	(a) $\frac{13}{2}$ cubic unit	(b) $\frac{15}{2}$ cubic unit	(c) $\frac{7}{2}$ cubic unit	(d) $\frac{9}{2}$ cubic unit

- If $\int \frac{2^{x}}{\sqrt{1-4^{x}}} dx = k \sin^{-1}(2^{x}) + c$ then k =
 - (a) $\frac{1}{\log 2}$
- (b) $\frac{1}{2}\log 2$ (c) $\frac{1}{2\log 2}$
- (d) none
- One of the limiting point of the coaxial system of the circles determined by the two 159. touching circles $(x-2)^2 + (y+3)^2 = 5$ and $(x-5)^2 + (y-3)^2 = 20$ is
 - (a) (2, -3)
- (b) (3, -1)
- (d)(-2, -3)

- If $\csc A + \cot A = \frac{11}{2}$ then $\tan A$ is 160.
 - (a) $\frac{21}{22}$
- (b) $\frac{15}{22}$ (c) $\frac{44}{117}$
- (d) $\frac{117}{43}$

BOTONY

81.	The scientist who propose rusts in India is:	sed several simple	and practical n	neasures for controlling wheat			
) P.K.K Nair	(c) Micheli	(d) P.Maheswari			
82.	The functions of ICAR at		(c) Whenen	(a) 1 ividies wait			
02.	(a) To promote basic and		for improving	crop varieties.			
	(b) To control and co-ord			orop various.			
				king in the field of agriculture.			
	(d) All the above			8			
83.	` /	ng about a consta	nt physical co	ontact involving almost equal			
	<u> </u>	•	- •	orms. He was trying to explain			
	one of the following:			, , ,			
	(a) Mycorrhizal associati	on	(b) Establishn	nent of heterothallism			
	(c) Operation of Heteroth			lichen formation.			
84.	A dicot plant with only o	ne tuberous root is	seen in				
	(a) Ipomoea batatus		(b) Daucus ca	rota			
	(c) Ruellia tuberosa		(d)Asparagus	racemosus.			
85.	Leaflets are developed or	n the branches form	ned on the prim	ary rachis only in			
	(a) Tamarindus (b)) Delonix	(c) Millington	ia (d) Coriandrum			
86.	Choose the correct comb		ollowing				
	<u>Column − A</u>	$\underline{\text{Column} - B}$		<u>Column – C</u>			
	(I) Hypanthodium	Fleshy cuplike p	eduncle	Sessile unisexual flowers			
	(II) Cyathium	Deep cuplike ped		Pedicellate unisexual flowers			
	(III)Head Inflorescence	Flattened disc lik	te peduncle	Pedicellate unisexual and / or			
				bi-sexual flowers			
	(IV) Spadix	Fleshy peduncle		Pedicellate unisexual flowers			
		I, II & III	(c) I & II	(d) I Only			
87.	Polysiphonous pollen gra						
	(a) Single pollentube is developed from many pollen grains						
	(b) Many pollentubes are developed from many completely, fused pollen grains						
	(c) More than one pollentube are formed from each pollen grain						
00	(d) Many pollen grains an		- 1	1			
88.				ach microsporangium of every			
			spore motner c	cells. How many pollen grains			
	are formed from that plan		(a) 24 000	(4) 49 000			
89.) 10,000 mbor of cohorts of	(c) 24,000	(d) 48,000 ypetalae and gamopetalae in			
09.	Bentham and Hooker cla		sub classes poi	ypetalae and gamopetalae m			
) 1:1	(c) 2:3	(d) 5:7			
	$(a) \ 3.2 \qquad (b)$, 1.1	(C) 2.3	(u) 3.1			

90. Each carpel of Gloriosa encloses 60 ovules, out of which 27% to										
	another 13% could not be fertilized due to various reasons. How many seeds occur in the capsule if all the remaining ovules are fertilized in the lone flower of the plant?									
	(a) 36		ining ovur (b) 76	cs arc	ıcıtılı	(c) 108	o ione in	OWCI	(d) 180	
91.	Assertion (A): N		` '	zor roo	ione	` '	in prok	orvot	` '	
<i>7</i> 1.			-	_			-	ai you	CS	
	Reason (R): True nucleus is absent in prokaryotic cells (a) A and R are true and R is the correct explanation of A.									
	(b) A and R are			t the Co	meci	_				
02	(c) A is true, R i			0.40 1	an ath	(d) A is			e. rtosine. Then the t	o+o1
92.					engun	contains	5 20% C	и Су	tosine. Then the t	otai
	number of hydro	_		are		(a) 270			(4) 120	
02	(a) 360		(b) 120	.	4 !	(c) 270		1 C	(d) 130	11
93.	_			ie forii	iation	of outer	most an	ia iirs	st formed layer of	cen
		wall during cytokinesis are				(C) E D			(D) I	
	(A) Dictyosome		(B) Perox	ysome	S	(C) E.R			(D) Lysosomes	
0.4	(a) A, B		(b) B, C			(c) C, D			(d) A, C	
94.	Wood of a tree trunk consists of				(III) Bark (IV) Duramen					
	(I) Bast		(II) Albur	num		` /			(IV) Duramen	
0.5	(a) I, II		(b) II, III	1 6		(c) II, IV			(d) I, II, III	. •
95.	Arrange the following in the order of their location from periphery to center in the entire								tire	
	dicotyledonous		•			(III) C 1	1 ,		(IV.) T. 1	
	(I) Fusiform cell		(II) Trich			(III) Col	•		(IV) Tyloses	
0.6	(a) IV, I, II, III		(b) II, III,		011	(c) III, I	I, I, IV		(d) I, IV, III, II	
96.	Assertion (A): L									
		Reason (R): Libriform fibres develop from non-functional tracheids by reduction.								
	(a) A and R are				_					
	(b) A and R are			t the co	orrect	-				
0.7	(c) A is true, R i					(d) A is	false, R	is tru	e.	
97.	Study the follow	ing lis	sts				**			
	<u>List - I</u>					<u>List – II</u>				
	(A) Ephemeral					(I) Neerium				
	(B) Mucilage				(II) Zizipus					
	(C) Multiple epidermis				(III) Calotropis					
						(IV) Tribulus				
						(V) Ale	oe			
	The correct mate					_	~	_		
	A B C			<i>a</i> .	A	В	C	D		
	(a) II IV V			(b)	V	II	I	IV		
	(c) IV V I	II		(d)	IV	III	II	I		

98.	Select th	he inc	orrect	match							
	(a) Salvia - Free floating rootless pteridophyte										
	(b) Wol	ffia -	Free f	loating re	otless ang	iosperm					
	(c) Cera	tophy	llum	- submerg	ged suspen	ded roo	tless angi	osperm			
	(d) Pisti	a - Fr	ee flo	ating ang	iosperm w	ith root	pockets.				
99.	According to product law the probability of yellow wrinkled seeds is represented as										
									(d) $\frac{1}{2}\lambda$		
100.					Pisum sat			10	~	2 1	
100.	(a) 14	01 111	inage	(b) 2	i i isaiii sa		:) 4		(d) 7		
101.	` '	n (A)	· The	` '	in Funaria	`	,	anlontic	` /		
101.	Reason			•			-	-	tophytic an	d dinloid	
	Reason	(11)			nases, one		-	_		a aipioia	
	(a) A an	d D a	-		the correct				ouici.		
					s not the co				t-m.1.0		
102	(c) A is						l) A is fa				4:
102.	Two adjacent filaments of Spirogyra offinis each 10 cells participating in reproduction How many new Spirogyra plants are produced during sexual reproduction?										
		any ne	ew Sp		_		_	exuai re	_	!	
102	(a) 5	L - 11!	•	(b) 10		(0	2) 20		(d) 40		
103.	Heterotl		m is a	Kina of		(1					
	(a) Isog	-) Anisog		•		
104	(c) Oog	•	,•	c	1 1 1				anisogamy	1 4 .	
104.	What is the ratio of equational divisions that takes place in Cycas and Angiosperms										
	-	respectively leading to the formation of male gametes from pollen grain?									
405	(a) 3:2	0 11		(b) 3:	l	(0	2) 2:1		(d) 2:3		
105.	Study the following lists										
	List				, ,	/*	<u>List – I</u>				
				eris takes	palce in) Sporo				
	` '	(B) Endosperm in Cycas (II) Gametophyte									
		(C) Calyptra (III) Sporophyte									
	(D) Nucellus in Cycas (IV) Gametophyte										
						(1)	I) Gam	etophyte	e		
	The cor										
	A	В	C	D		A	В	C	D		
	(a) I	IV	V	III	(b)	IV	I	V	III		
	(c) I	V	III	IV	(d)	III	II	I	IV		
106.	Assign	the fo	ollowi	ing substa	ances to c	ellwall,	flagella,	'S' lay	er and pili	of bacte	eria in
	correct s										
	(I) Glyc			, ,	mbrillin	(I	II) Teich	oic acid	(IV) Fl	agellin	
	The cor		-	ce is							
	(a) III, I	, IV, I	II	(b) III	, IV, I, II	(0) II, IV,	III, I	(d) III,	IV, II, I	

genetic material is (a) Tobacco mosaic disease (b) Cauliflower mosaic disease (c) Dahlia mosaic disease (d) Rice stunting disease 108. By which mechanism the salt resistant plants can get rid off excess Na⁺ ions to the outer side through the roots? (a) H⁺ -ATP ase uniportsystem (b) Na⁺ -ATP ase uniportsystem (d) Na⁺ -H⁺ antiport system (c) H⁺ -Cl symport system Three plant cells A, B, C are in contact with one another as detailed below. Find the 109. direction of water movement. =-6.0 barsP = 3 bars $\pi = -9 \, bars$ $\pi = -4bars$ P = 5 bars P = 2 bars(c) (b) The water adhered to the soil particles due to surface forces but not available to the plant 110. (a) Gravitational water (b) Hygroscopic water (d) Runaway water (c) Capillary water Study the following table and find out the correct combination. 111. Column - BColumn - AColumn - C Hexokinase (I) Zn^+ IAA Synthesis NO_3^- to NO_2^- (II) Mo Dinitroginase (III) Fe^{+2} Breakdown of H₂O₂ Catalase (a) I alone (b) I and II (c) II and III (d) III alone Assertion (A): In C₄ path way, the primary carboxylation occurs in cytosol of bundle 112. sheath cell. (R): PEP - Carboxylation occurs in the cytosol of mesophyll cell Reason (a) A and R are true and R is the correct explanation of A. (b) A and R are true and R is not the correct explanation of A. (c) A is true, R is false. (d) A is false, R is true. Which of the following are mobile electron carriers associated with fourth step of aerobic 113. respiration (I) Ubiquinone (II) Cytochrome - 'C' (III) Plastocyanin (IV) Cytochrome b₆ (a) I, II and IV (d) IV alone (b) II, III and IV (c) I and II

The disease caused by the virus having double stranded nucleic acid with ribose sugar as

107.

114.		plecules of both LHC -		and LHC - II and the			
	(a) 1:1	(b) 4:1	(c) 4:3	(d) 3:4			
115.	` '	of molecular biology w	` '				
	(a) Sachs	(b) Crick	(c) Lederberg	(d) Watson			
116.	This is highly efficient	ient auxin used in hortic	d in horticulture to induce roots on stem cuttings				
	(a) IAA	(b) PAA	(c) 2, 4, 5 - T	(d) IBA			
117.	Large number of de	esirable characters can l	be incorporated in to a s	ingle variety by			
	(a) Mutational bree	ding	(b) Clonal selection				
	(c) Hybridization		(d) Pureline selection	1			
118.	The common disad	vantage among the alga	al, fungal and bacterial S	fungal and bacterial SCP is			
	(a) Rate of growth:	is slow	(b) Low cell density				
	(c) Risk of contami	nation	(d) Rich in RNA				
119.	The DNA with foll	owing base sequence is	s treated with Eco RI. A	At how many places the			
	enzyme cuts the Di	NA.					
		5¹CGAATTCTGCT					
		3 ¹ GCTTAAGACGA	AATTCTATA5 ¹				
	(a) 3	(b) 4	(c) 5	(d) 2			
120.	Nutrition of Mushr	oom is					
	(I) Saprophyte	(II) Symbiont	(III) Parasite	(IV) Autotroph			
	The correct combination is						
	(a) I and II only	(b) II and III only	(c) I. II and IV only	(d) I. II and III only			

ZOOLOGY

121.	In Vortice fission is		njugatio	on, the i	number of	findividua	als form	ned in th	ne 3 rd of	post co	onjugation		
	(a) 8		(b) 7		(c) 4			(d) 6				
122.		ous ins	ect with	pierci	ng and su	cking type	of mor	uth part	S				
	(a) Cime			b) Pedi			errica 1			ombyx	mori		
123.	The sper	matoph				oulation ar							
	(a) Diver						(b) ampulla of spermatheca						
	(c) Septa		_				(d) Prostate glands						
124.	Choose of			ation		()	(1)						
	(A) Calc				va	(B) S	(B) Scyphozoa – Ephyra larva						
	(C) Turb							-	Trocho		arva		
	The corre					()	1	1	,	L			
	(a) A & 1			b) B &	C	(c) B	& D		(d) A	& C			
125.			,	,		` '		inite ho	. ,				
	Haploid motile stages of plasmodium that of (a) Male gametes, Ookinete						(b) Sporozoites, Oocyst						
	(c) Male gamete, Sporozoite						L	e, Game	cocyte				
126.		_	-		li is quick	er and mo			•	netry			
	(a) Radia			b) Bira	-		pherica		•	ilateral			
127.	Match the following:												
	(A) Acidophils (I) Inflammation												
	(B) Baso	-		(II) Blood	clotting							
	(C) Neut	rophils		(III) Antib	odies							
	(D) Plasi	ophilia											
	(E) Thro	mobocy	ytes	(V) Phago	cytes							
	A	В	C	D	Е	•	A	В	C	D	E		
	(a) IV	I	V	II	III	(b)	IV	III	II	I	V		
	(c) IV	I	V	III	II	(d)	IV	V	III	II	I		
128.	Blood fro	om the	septal n	ephridi	a of Phere	etima is co	llected	by					
	(a) Septo	nephri	dial blo	od vess	sel	(b) C	ommis	sural bl	ood ves	sel			
	(c) Ventro tegumentary blood vessel						ub neur	al bloo	blood vessel				
129.	Scolopidia are the units of												
	(a) Omm	atidia				(b) C	(b) Chemoreceptors						
	(c) Mechanoreceptors						hermor	eceptor	S				
130.	In the development of Taenia solium micro						form						
	(a) Embryophore						hell lay	er					
	(c) Outer	embry	onic me	embran	e	(d) M	Iorula						
131.	One horr			-									
	(a) Kanh	a – Nat	ional pa	ırk – M	adhya Pra	adesh							
	(b) Periy		_										
		_		-	x – Assam								
	(d) Nand	ladevi –	- Nation	al park	- Uttarkh	nand							

132.133.	Sibling species are (a) Morphologically similar and capable of interbreeding (b) Geographically isolated but capable of interbreeding (c) Reproductively isolated and morphologically similar (d) Morphologically alike but not reproductively isolated Assertion (A): In Pheretima, rapid conduction of impulses occur through out the whole								
	length of the body.								
	Reason (R): Nervous system of pheretima has four giant axons along the ventral side of nerve cord.								
	(a) A and R are true and R	is the correct exp	olanation o	f A					
	(b) A and R are true and R	is not the correct	t explanation	on of A					
	(c) A is true, R is false			alse, R is tru					
134.	In cockroach, flexibility of								
	(a) Sclerotised chitinous la	iyer	, ,	nous cuticul	ar layer				
	(c) Non-Chitinous layer		(d) Ceme	•					
135.	The bacteria responsible for								
126		Closteridium	(c) Nitrol	bacter	(d) Nitrosomonas				
136.	Choose the correct combin			Croun					
	Animal (A) Echinocardium	<u>Character</u> Aristotle's lante		Group Echinoidea					
	(B) Pecten	Radula		Lamellibra					
	(C) Aphrodite	Parapodia Parapodia		Polychaeta	icinata				
	(D) Limulus	Book gills		Xiphosura					
		All except B	(c) All ex		(d) C, D only				
137.	The site for ATpase activity	•	(0) 1111 01	icopi c	(a) 0, 2 om j				
		Dynein arms	(c) Micro	otubules	(d) Central Sheath				
138.	The character of annelids								
	(a) Botryoidal tissue		_	exual animal	ls				
	(c) Trochophore larva		(d) Gono	ducts absen	t				
139.	Which of the following is	related to seconda	ary amoebi	iasis					
	(a) Amoebic dysentery (b) Amoebic hepa	titis (c)	Peritonitis	(d) Appendicitis				
140.	Photochemical smog pollu								
	(a) Nitrogen dioxide (b)			on dioxide	(d) PAN				
141.	Assertion (A): Heart sound		_	-	5				
			valves occ	eur, when ve	entricular pressure falls				
		trial pressure	alamatian a	f A					
	(a) A and R are true and R	-							
	(b) A and R are true and R(c) A is true, R is false	is not the correct	-	alse, R is tru	10				
142.	The pathogen for chronic	resniratory deseas	, ,						
174,	(a) Paramyxo virus	respiratory deseas	-	m albicans					
	(c) Pasteurella avicida		` /	plasma gall	isepticum				
	(-,		(=, 1.1, 00	8 mi	T				

143.	During popened in		tion of	f nerve im	pulse botl	n Na ⁺	activat	tion and	inact	ivation g	ates are	
	(a) Depo	larising	phase			(b) Repolarising phase						
	(c) Hype			ase			esting p					
144.	The substance in primary urine which is not reabsorbed in any part of nephron											
	(a) Urea		-	(b) Creatini			lucose			Jric acid		
145.	` '	the foll		events that					` /	ce		
	(A) Delamination			(B) Amphir		-	ompact	-		mplantati	ion	
	(E) Capacitation			F) Involuti		` '	1		` /	1		
	(a) B, E,			(b) E, B, A,		(c) E.	B, C, I	O, A, F	(d) E	E, B, C, F,	, A, D	
146.	Match th			, , , ,	, ,	, , ,	, ,	, ,	` '	, , , ,	,	
			_	(I) Dentary								
	(B) Mastoid process (II) Axis											
	(C) Coronoid process (III) Scapula											
				(IV) Perioti								
	Α	В	C	D			A	В	C	D		
	(a) III	II	I	IV		(b)	IV	III	II	I		
	(c) II	I	III	IV		(d)	II	IV	I	III		
147.	Autosomal recessive haemophilia is due to deficiency											
	(a) Anti haemoglobin globin					(b) Thrombokinase						
	(c) Plasn	na thron	nbopla	stin anteced	lent	(d) Fi	brinoge	en				
148.	Read the	follow	ing				_					
	(A) Hexa	agonal v	vertebr	als		(B) D	orsal so	cales are	keeled	d		
	(C) Arro	w mark	on hea	ad		(D) Cuneate plate						
	(E) Single row of sub caudals											
	Identify the characters of Echis											
	(a) ACE		((b) BCE		(c) D	CE		(d) A	ABC		
149.	The excr	etory or	rgans i	n Assymme	etron							
	(a) Solen	ocytes	((b) Podocyt	es	(c) Fl	ame ce	lls	(d) K	Cidney		
150.	Which o fossil	f the fo	ollowin	ng has three	e – lobed	diphy	cercal 1	tail and	is con	sidered a	s living	
	(a) Proto	pterus		(b) Climatiu	ıs	(c) H	ippocar	npus	(d) L	atimeria		
151.	` '	1		• •							= 0.16.	
	A population of 100 moths show genotypic frequencies of wing color $AA = 0.36$ and $Aa = 0.48$ what is the allelic frequency of alleles A and a respectively											
	(a) 0.4 ar			(b) 0.6 and			3 and 0			.7 and 0.3		
152.	, ,			ibules are p					(-, -			
-	(a) Repti			(b) Aves			mphibia		(d) N	I ammals		
						, ,	-		. ,			

153.	Following are the parts of male reproductive system in Rabbit										
	(A) Seminal vesicle	(B) Vas efferentia	(C) Rete Testis	(D) Epididymis							
	(E) Vas deferens	(F) Seminiferous tub	oules								
	Arrange them in sequence based on movement of sperms										
	(a) $F - C - B - E - D$	0 – A	(b) $F - C - B - D -$	-E-A							
	(c) $F - C - A - E - D$) – B	(d) $F - C - E - D -$	-A-B							
154.	Study the following										
	<u>Harmone</u>	Secreted by	Function								
	(A) Somatostatin	Hypothalamus	Inhibits secretion of	f insulin and glucagon							
	(B) Melatonin	Pineal gland	Regulate annual br	eeding cycles							
	(C) Cholecystokinin	Gall bladder	Secretion of pancre	eatic juice							
	(D) Calcitonin	Parathyroid	Inhibits bone resor	ption							
	In the above the correct are										
	(a) A and D only	(b) A and C only	(c) B, D only	(d) B only							
155.	If the heart valves of pig are transplanted to man, it can be classified under										
	(a) Autograft	(b) Isograft	(c) Xenograft	(d) Allograft							
156.	Sickle cell haemoglobin is formed due to replacement of										
	(a) Glutamic acid by	valine	(b) Glutamic acid b	y lysine							
	(c) Valine by glutam		(d) Lysine by gluta								
157.	Oxygen – haemoglob		e shifts to the right under the condition								
	(a) Low PH		e (c) High PH	(d) High PO ₂							
158.	Malignant tumours o	-									
	(a) Sarcoma	` '	(c) Carcinoma								
159.	The natural selective force that brings phenotypic stability for long period is										
	(a) Stabilising selecti		(b) Directional selection								
	(c) Disruptive selecti	on	(d) Natural selection	on							
160.	Read the following										
	(A) skin	(B) Phagocytes	• •								
	(D) Fever		(F) Saliva								
	Which of the above are second line defence										
	(a) B, D, E	(b) A. B. F	(c) B, C, F	(d) A, C, F							
